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Abstract—We report that human walk patterns contain statisti-
cally similar features observed in Levy walks. These features in-
clude heavy-tail flight and pause-time distributions and the super-
diffusive nature of mobility. Human walks are not random walks,
but it is surprising that the patterns of human walks and Levy
walks contain some statistical similarity. Our study is based on
226 daily GPS traces collected from 101 volunteers in five different
outdoor sites. The heavy-tail flight distribution of human mobility
induces the super-diffusivity of travel, but up to 30 min to 1 h due
to the boundary effect of people’s daily movement, which is caused
by the tendency of people to move within a predefined (also con-
fined) area of daily activities. These tendencies are not captured
in common mobility models such as random way point (RWP).
To evaluate the impact of these tendencies on the performance of
mobile networks, we construct a simple truncated Levy walk mo-
bility (TLW) model that emulates the statistical features observed
in our analysis and under which we measure the performance of
routing protocols in delay-tolerant networks (DTNs) and mobile
ad hoc networks (MANETS). The results indicate the following.
Higher diffusivity induces shorter intercontact times in DTN and
shorter path durations with higher success probability in MANET.
The diffusivity of TLW is in between those of RWP and Brownian
motion (BM). Therefore, the routing performance under RWP as
commonly used in mobile network studies and tends to be overes-
timated for DTNs and underestimated for MANETSs compared to
the performance under TLW.

Index Terms—Delay-tolerant network (DTN), human mobility,
Levy walk, mobile ad hoc network (MANET), mobile network,
mobility model.

I. INTRODUCTION

OBILE networks are inherently cooperative as mobile
devices rely on nearby nodes to maintain network con-
nectivity or relay messages. Therefore, the underlying mobility
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patterns of mobile nodes strongly influence the performance of
mobile network protocols. As wireless devices are often carried
by humans, understanding their mobility patterns leads to more
realistic network simulation and more accurate understanding
of the performance of the protocols therein.

Commonly used mobility models in computer networking re-
search are random way point (RWP) [1]-[3] or random walk
models such as Brownian motion (BM) [4]-[6] and Markovian
mobility [7], [8]. These models are simple enough to be theo-
retically tractable and, at the same time, to be emulated in net-
work simulators in a scalable manner. However, no empirical
evidence exists to prove the accuracy of such models.

BM characterizes the diffusion of tiny particles with a mean
free path (or flight) and a mean pause time between flights. A
flight is defined to be a longest straight-line trip of a particle
from one location to another without a directional change
or pause. Einstein [9] first showed that the probability that
such a particle is at a distance r from the initial position after
time ¢ has a Gaussian distribution. The mean squared displace-
ment (MSD), which is a measure of the average displacement
of a given object from the origin, is proportional to . This
mobility is said to have normal diffusion. Many objects in the
physical world undergo normal diffusion. For example, when
sugar dissolves in a cup of still water, sugar particles undergo
normal diffusion. Physicists (e.g., [10]) have found that there
are other objects in the physical world whose mobility cannot
be characterized by normal diffusion. Levy walks are one of
the random walk models that describe such atypical mobility
undergoing super-diffusion: Their MSD is proportional to ¢7,
where v > 1. (When v = 1, it is called normal diffusion, and
when v < 1, it is subdiffusion.) Typically turbulent flows are
super-diffusive. For example, when sugar dissolves in a cup of
stirred water, they undergo super-diffusion. The super-diffusive
nature of Levy walks results from the heavy-tail distribution
of their constituent flights. Intuitively, Levy walks consist
of many short flights and occasionally long flights. RWP is
invented primarily for mobile network simulation wherein a
node chooses its next destination randomly within a mobility
area and makes a straight line flight to that destination from the
current destination. RWP is highly super-diffusive because of
high probability of long flights. Sample trajectories of an object
undergoing BM, Levy walks, and RWP are presented in Fig. 1.

The heavy-tail flight patterns are also found in animal for-
aging behaviors. Viswanathan et al. [11] show that the flight
distribution found in the mobility of albatrosses follows a
power-law distribution. Similar patterns are also discovered
in jackals [12] and spider monkeys [13]. The authors in [13]
conjecture that the heavy-tail flight patterns of these animals
are caused by the power-law distribution of prey and food
sources. It is also known that Levy walks are an optimal way to
find randomly dispersed objects [14]. Unfortunately, some of
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Fig. 1. Sample trajectories of (a) BM, (b) Levy walk, and (c) RWP.

these results are recently being disputed largely due to lack of
accuracy in collected data and also in the processes collecting
and analyzing them [15]. Because of the difficulty in collecting
accurate trace data with high resolution from animals, such
claims may not be easily proved or disproved.

In this paper, we study the mobility patterns of humans up to
the scales of meters and seconds. We use mobility track logs ob-
tained from over 100 participants carrying GPS receivers. The
traces are obtained from five different sites: two university cam-
puses (NCSU and KAIST), one metropolitan area (New York
City), one theme park (Disney World), and one state fair. The
participants walk most times in these sites and may also occa-
sionally travel by bus, trolley, cars, or subway trains. These set-
tings are selected because they are conducive to collecting GPS
readings. The GPS receivers record their location information
at every 10 s with accuracy of 3 m. The total number of partici-
pants is 101, the total duration of the traces taken is over 2228 h,
and the total number of extracted flight samples is over 200 000.

Our data are by far the most detailed with high resolution
and accurate traces of human mobility. Brockman ef al. [16]
show Levy-walk patterns in human travels over the scale of a
few thousands of kilometers using bank note travel patterns.
Gonzales et al. [17] use tracking information of 100000 mo-
bile phone users to show that human walks have heavy-tail flight
distributions (note that our work [18], [19] precedes theirs). The
location of a cell phone tower from which a user is initiating or
receiving a call is registered as the location of the user whenever
a call is made. Additionally, the locations of 206 users are sam-
pled at every 2-h intervals for a one-week period. The resolu-
tion of location information is around 2—-3 km?. Both bank-note
and phone-tracking data do not accurately record the flight in-
formation of humans. First, their resolution is at least three-or-
ders-of-magnitude lower than ours (e.g., meters versus kilome-
ters). Furthermore, any flights or travels that occurred between
consecutive sampling points (e.g., a 2-h sampling interval or
consecutive call establishments) are not tracked. Therefore, it
is uncertain whether one can define every straight line between
two consecutive sample locations (separated by up to a 2-h pe-
riod) as a single flight. In fact, our data analysis suggests that the
information lost within the two consecutive sample locations of
people is very critical in understanding and recreating human
walk patterns for mobile network simulation. It is hard to apply
these statistical features to a detailed simulation of mobile net-
works, which requires resolutions of a few meters and a few
seconds due to short radio ranges of mobile devices.

The analysis of our dataset indicates that the mobility of
people contains similar statistical features to those found in
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Levy walks. In particular, their flight and pause-time distribu-
tions are best characterized by heavy-tail distributions such
as Weibull, lognormal, Pareto, and truncated Pareto distribu-
tions, and their MSDs are characterized by super-diffusion
up to 30 min to an hour and subdiffusion after that. These
characteristics can be captured by Levy walkers moving within
a confined area. The time threshold for super-diffusion is
typically the time that our participants for data collection reach
the boundary of their individually confined mobility area.
Previous results from animal or human mobility studies show
similar trends, but they are not as accurately observed as in
our paper. These statistical features observed from our traces,
however, contradict the mobility patterns found in commonly
used mobility models for computer networking such as RWP,
Random direction [20], and BM, whose mobility does not
produce heavy-tail flights.

Typically, computer networks are studied using random mo-
bility models or using a probabilistic model based on a particular
distribution of intercontact times (ICTs), which are defined to
be the time durations until two mobile objects meet again after
meeting previously (e.g., [21]). While previous random mobility
models lack the statistical features we found from our traces, the
ICT-based simulation does not have essential positional infor-
mation that might uniquely influence the performance of mo-
bile networks. Since it is hard to define the underlying mobility
uniquely from a given ICT distribution, the results of perfor-
mance evaluation using only ICT distributions without knowing
the exact underlying mobility is possibly misleading.

Empirical studies (e.g., [22]) show that the ICT distributions
of human mobility have a power-law head followed by an ex-
ponential tail. It is also shown analytically that the exponential
tail of the ICT distribution is caused by the homecoming nature
of people [23] and also by the boundary effect [24]. However,
what exact features of underlying mobility cause the power-law
head of the ICT distributions is not known. Intuitively, when
nodes do not move much, they tend not to meet with each other
very often, thus having long ICT. In this paper, we find by sim-
ulation that BM and Levy walks produce power-law ICTs [18]
as their mobility consists of many short flights, but Levy walks
have much shorter ICTs than BM because of the frequency of
long flights in Levy walks. On the other hand, RWP produces
mostly short ICTs, and thus an exponential distribution of ICTs
because of the very high frequency of long flights in RWP [25].
In summary, we find that Levy walks running in a confined area
generates an ICT distribution with a power-law head followed
by exponential tails whose average values are in between those
of RWP and BM.

Based on the statistical patterns obtained from the traces,
we construct a simple Levy-walk model called truncated Levy
walks (TLW). TLW is a random walk that uses truncated
Pareto distributions for flight and pause-time distributions to
emulate mobility within a confined area. The main purpose of
constructing TLW is to study the impact of heavy-tail statistical
features on the performance of mobile networks. We do not
claim that TLW is the most accurate human mobility model.
As it is a simple random walk model, it cannot represent the
important spatial, temporal, and social contexts that people
live in. Despite these deficiencies, TLW can still provide
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more realistic representations of statistical patterns found in
human mobility than existing random mobility models while
preserving the simplicity and analytical tractability of random
mobility models.

We apply TLW to the performance evaluation of DTN and
MANET routing protocols. We find that higher diffusivity in-
duces shorter intercontact times in DTN and shorter path dura-
tions with higher connection probability in MANETS. The dif-
fusivity and ICTs of TLW are in between those of RWP and
BM. Therefore, the routing performance reported using RWP
as commonly used in mobile network studies tends to give at
least an order of magnitude shorter routing delays than TLW in
DTNs and an order of magnitude lower throughput than TLW
in MANETS. Furthermore, since heavy-tail tendencies of TLW
induce heavy-tail routing delays and throughput, reporting only
a single performance number such as average and median is not
very meaningful for understanding the performance of mobile
networks.

As it is not the purpose of our paper to present TLW as an
accurate mobility model, we do not attempt to study and com-
pare the performance of TLW to many more sophisticated mo-
bility models in the literature (e.g., [26]-[28]). However, clearly
these existing models do not emulate heavy-tail statistical fea-
tures. The main contribution of this paper remains at suggesting
that the emulation of the heavy-tail features is an important new
component that can be incorporated into these models to im-
prove their realism. We leave the work of developing accurate
human mobility models for future work. The readers are referred
to [29] for our preliminary work on this topic, where the com-
parisons with various existing mobility models are presented.

This paper is organized as follows. Section II provides
preliminary background on Levy walks and statistical analysis.
Section III discusses our data collection and analysis tech-
niques. Section IV presents our main result—the statistical
analysis of mobility traces to establish that human walks exhibit
Levy-walk characteristics. Section V presents a simple trun-
cated Levy-walk model that can be used for mobile network
simulations, and Section VI contains our study on routing per-
formance using the truncated Levy-walk model. Sections VII
and VIII contain related work and our conclusion.

II. BACKGROUND

A. Levy Walks

Levy walks can be defined as continuous-time random walks
whose turning points are visit points of the associated Levy
flights, and unlike Levy flights [30], [31], they account for the
time taken to complete each flight. The average displacement
of a Levy walk is characterized by a time-dependent growth of
displacement, as the cost of time for making each flight is ex-
plicitly given [31] from one location to another (i.e., flights) with
the following features: 1) its MSD is infinite; and 2) the distri-
bution of flight lengths follows a heavy-tailed distribution. We
now consider a random walker and choose the joint space—time
probability density function (PDF) ®(r,t)

O(r, 1) = ¢(t|r)p(r) (1)
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TABLE I

STATISTICS OF COLLECTED MOBILITY TRACES FROM FIVE SITES
Site (# of # of Duration (hour) Radius (km)
participants)  |traces | min | avg | max | min | avg | max
Campus I (20) 35| 1.71 |10.19 | 21.69 | 0.77 | 2.83 | 10.57
Campus IT (32)| 92| 4.21 |12.21 | 23.32 | 0.31 1.83 | 13.31
NYC (12) 39| 1.23 | 844 | 2266 | 042 | 6.60 | 17.74
DW (18) 41| 2.17 | 899 | 1428 | 025 | 3.60 | 16.79
SF (19) 19 148 | 256 | 3.45 | 017 | 0.51 0.86

where p(r) is the probability that a flight of length » occurs and
¢(t|r) is the conditional probability density that such flight takes
t time. ¢ and 7 determine the speed of the flight. When p(r) is a
heavy-tailed distribution, a process specified by the probability
density function ®(r, t) is a Levy walk [30].

B. General Random Walk Model

Consider a two-dimensional random walk defined by a se-
quence of steps that a walker makes. A step is represented by
atuple S = (I,0, Ats, At,) in which a walker makes a flight
followed by a pause. 6 is the direction of that flight, [ > 0 is the
length of the flight, Aty > 0 is the time duration of the flight or
flight time, and At, > 0 is the time duration of the pause time
or pause time. At the beginning of each step, a walker chooses a
direction randomly from a uniform distribution of angle within
[0, 360], a finite flight time randomly based on some distribu-
tion, and its flight length and pause time from probability distri-
butions p(!) and 1) (At,), respectively. During a pause, a walker
does not move from the location where the current flight ends.
The time elapsed during a step is called a step time Atg, which
is the summation of its flight time and pause time. The walker
starts its first step at the origin at time ¢t = 0.

III. MEASUREMENT METHODOLOGY

A. Data Collection

Five sites are chosen for collecting human mobility traces.
These are two university campuses [North Carolina State Uni-
versity, Raleigh, in the U.S. and Korea Advanced Institute of
Science and Technology (KAIST), Daejeon, Korea, in Asia];
New York City (NYC), NY; Disney World (DW), Orlando,
FL; and one state fair (SF) in Raleigh, NC. The total number
of traces from these sites is 226 daily traces. Garmin GPS
60CSx handheld receivers, which are Wide Area Augmentation
System (WAAS)-capable with a position accuracy of better
than 3 m 95% of the time, are used for data collection in North
America [32]. Occasionally, track information has disconti-
nuity when bearers move indoors where GPS signals cannot
be received. The GPS receivers take readings of their current
positions every 10 s and record them into a daily track log. The
summary of daily trace is shown in Table I. We use Campuses I
and II to indicate university campuses without revealing their
locations.

The participants in Campus [ were randomly selected stu-
dents who took a course in the Computer Science Department.
Every week, two or three randomly chosen students carried the
GPS receivers for their daily regular activities. The Campus-II
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traces are taken by 32 students who live in a campus dormi-
tory. The New York City traces were obtained from 12 volun-
teers living in Manhattan or its vicinity. Their track logs con-
tain relatively long-distance travels. Their means of travel in-
clude cars, buses, and walking. The Disney World traces were
obtained from 18 volunteers who spent their Thanksgiving or
Christmas holidays in Disney World. The participants mainly
walked in the parks and occasionally rode trolleys. The state
fair track logs were collected from 19 participants who visited
the North Carolina State Fair, which includes many street ar-
cades, small street food stands, and showcases. The event was
very popular and attended by more than 1000 people daily for
two weeks. The site is completely outdoors and is the smallest
among all the sites. Each participant in the state fair scenario
spent less than 3 h in the site.

B. Trace Analysis

From the traces, we extract the following data: flight length,
pause time, direction, and velocity. To get these data from the
traces, we map the traces into a two-dimensional area (note that
the GPS receivers produce three-dimensional positions), and to
account for GPS errors, we clean the data as follows. We recom-
pute a position every 30 s by averaging three samples over that
30-s period (note that GPS samples are taken every 10 s). All
the position information discussed in this paper is based on the
30-s average positions.

As participants may move outside a line of sight from satel-
lites or run out of battery, daily traces may contain discontinu-
ities in time. For instance, if a participant disappears at time ¢ (in
seconds) at a position p from a trace and reappears at time ¢+ At
at another position p’, we use the following method, which is
a similar method used in [33], to remove the discontinuity. If
the next position recorded after the discontinuity is within a ra-
dius of 20 m and the time to the next position is within a day
boundary, then we assume that the participant walks to the next
position from position p at a walking speed of 1 m/s from time
t + At — k (k is the distance between p and p’ in meters) just
before he shows up again at position p’ in the trace and the re-
maining time (At — k) recorded as a pause at the location where
he disappeared. Otherwise, it is assumed that the trace has ended
at time ¢ and a new trace starts at time ¢ + Af.

We consider that a participant has a pause if the distance that
he has moved during a 30-s period is less than 7 m. Extracting a
flight from the GPS traces is not trivial because the definition of
flight includes direction changes. However, people do not nec-
essarily move in a perfect straight line although they may intend
to do so. Therefore, we need to allow some margin of errors in
defining the “straight” line. We use the following three different
methods: namely rectangular, angle, and pause-based models.
We differ only in the amount of the marginal angle errors. In the
rectangular model, given two sampled positions z and z. taken
at time ¢ and ¢t + A¢ (At > 0) in the trace, we define the straight
line between z5 and z, to be a flight if and only if the following
conditions are met.

1) The distance between any two consecutively sampled po-

sitions between x5 and z, is larger than  m (i.e., no pause
during a flight).
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Fig. 2. Rectangular model used to extract flight information from traces.

2) When we draw a straight line from x, to z., the sampled
positions between these two endpoints are at a distance less
than w m from the line. The distance between the line and
a position is the length of a perpendicular line from that
position to the line.

3) For the next sampled position z/, after z,, positions and the
straight line between z and 2/, do not satisfy conditions 1)
and 2).

An example of the rectangular model is shown in Fig. 2. In the
figure, the straight line movement between positions sampled at
times ¢(1) and ¢(4) is regarded as one single flight between the
two positions because all the sampled positions between them
are inside of the rectangle formed by the two endpoints. In this
example, the flight time is 90 s because each sample is taken
every 30 s. By controlling w, we can obtain very “tight” flight
information. Both 7 and w are model parameters.

The angle model allows more flexibility in defining flights.
In the rectangular model, a trip can be broken into small flights
even though consecutive flights have similar directions. This im-
plies even a small curvature on the road may cause multiple
short flights. To remedy this, the angle model merges multiple
successive flights acquired from the rectangular model into a
single long flight if the following two conditions are satisfied:
1) no pause occurs between consecutive flights; and 2) the rel-
ative angle (# as shown in Fig. 2) between any two consecu-
tive flights is less than ag. A merged flight is considered to be
a straight line from the starting position of the first flight to the
ending position of the last flight, and its flight length is the length
of that line. ag is a model parameter.

The pause-based model can be viewed as an extreme case of
the angle model. The pause-based model merges all the succes-
sive flights from the rectangular model into a single flight if there
is no pause between the flights. A merged flight is defined in the
same way as in the angle model. This model produces signifi-
cantly different trajectories from the actual GPS trajectories due
to the abstraction. However, it represents more faithfully human
intentions to travel from one position to another without much
deviation caused by geographical features such as roads, build-
ings, and traffic.

The rectangular and pause-based models can be viewed as
special cases of the angle model with ag = 0° and ay = 360°,
respectively. Fig. 3 presents sample traces produced by the
above three flight models. The trajectories become more sim-
plified as the flight model changes from the rectangular model
to the pause-based model.
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Fig. 3. Traces from (a)—(c) Campus I, (d)-(f) Disney World, and (g)—(i) State Fair. The first column represents the rectangular model with r =

w = 5 m, the

second column represents the angle model with s = 30°, and the third column represents the pause-based model.

TABLE II
WELL-KNOWN HEAVY-TAILED DISTRIBUTIONS

Distribution Probability density function (pdf) |
PR k k—1 Nk
Weibull (%) expzl[—( ()%) )]2
1 n(z)—p
lognormzal — = exp[—a ooz
oa
Pareto PrENy
3 aa®
Truncated Pareto (@5

L A Weibull distribution is heavy-tailed when k < 1.
2For0 < a < .
3For0 < a < <b<oo.

C. Fitness Metrics

Table II shows well-known heavy-tailed distributions. In
practice, all commonly used heavy-tailed distributions such
as Pareto, truncated Pareto, lognormal, or Weibull with de-
creasing failure rate (i.e., & < 1) belong to the subexponential
class [34]. To quantitatively find the best fitting distributions,
we apply Akaike’s information criterion (AIC) [35] after fitting
various distributions to our GPS traces by maximum likelihood
estimation (MLE).

AIC[15], [35] is a model (distribution) selection criterion and
is used in combination with MLE. MLE is a popular method

used to fit a mathematical probability distribution fy parameter-
ized by an unknown parameter ¢ (which could be vector-valued)
to empirical data. MLE finds an estimator # that maximizes the
likelihood function

AIC = —21og (L(fdata) ) + 2K @
where L(-) is the likelihood function and K is the number of es-
timable parameters (the value of ) in the approximating model
(probability distribution).

The AIC test can be applied only when there are a sufficient
number of samples (n), more specifically when n/K > 40
[35]. Since the numbers of estimated parameters of the prob-
ability distributions used in this paper are less than three, our
datasets have enough numbers of samples to be qualified for
AIC as shown in Table III.

As AIC values contain arbitrary constants and are greatly af-
fected by the sample size, they do not represent an absolute
metric and cannot be used directly. The following transforma-
tion makes the result an interpretable metric:

A; = AIC; — ATCmin 3)
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Fig. 4. Flight length distribution from the Campus-I traces in a log-log scale with logarithmic bin sizes. (a) Rectangular model (r = w = 5 mand ay = 0°).

(b) Angle model (ag = 30°). (c) Pause-based model.

TABLE III
NUMBER OF FLIGHT SAMPLES

number of flight (/) samples

Site [S0m] [>50m
Campus | 4286 297
Campus 11 9416 1563
New York City 1161 325
Disney World 4548 1178
State Fair 685 222

where AIC,,;, is the minimum of different AIC values. The
Akaike weights w; are useful as the weight of evidence [35]
—A;/2
w; = ;Xp( /2) @
2rm1 eXp(=4,/2)
where R is the size of a set of the approximating models (distri-
butions). Akaike weights are considered as normalization of the

model likelihoods. We use MLE as an estimation method and
AIC as a model (distribution) selection criterion.

IV. HUMAN MOBILITY

In this section, we analyze our GPS traces and closely
examine the statistical characteristics of mobility features
including flights, pause times, MSD, and absolute flight di-
rections. We first examine the distribution of flight lengths
(flight distribution, in short) taken from our traces. By fitting
with various well-known distributions, we find that the flight
distributions from the traces fit best to heavy-tailed distributions
such as Weibull, lognormal, Pareto, and truncated Pareto. This
result is unique as it is first to show such characteristic of human
mobility in the scale of meters. Our work precedes the work
by [17], which shows a similar tendency of human mobility
using cell phone logs. Our work also contrasts with the earlier
finding by [16] that human travel patterns have heavy-tail, based
on bank-note tracking on the scale of 1000 km. All these re-
sults collectively confirm that human mobility is characterized
byscale-freedom in which, in any scale, human movement has
similar patterns. We then show other evidence of scale-freedom
in human mobility. The distribution of pause times, the time
durations that a walker spends in each stopping point before
directional changes, also follows a heavy-tail distribution. The
consequence of heavy-tail flights is the super-diffusivity of
human mobility. We confirm this property by analyzing the
mean squared distribution of people from the traces. Due to
truncation caused by the movement boundaries, we can observe

the super-diffusivity only up to 1 h (mostly to 30 min). These
characteristics coincide with those from Levy walks although
human walks are not random walks like Levy walks. To com-
plete our data analysis, we examine the other statistical aspects
of human mobility from the traces such as the distribution
of flight directions and speed of travels, which are useful in
constructing realistic human mobility models.

A. Flight Length Distribution

We examined both individual and aggregated flight distribu-
tions. The aggregated flight distributions aggregate flight sam-
ples from all the traces of the same site, regardless of their partic-
ipants. The individual flight distributions show similar patterns
as the aggregated ones, so we present only the aggregated dis-
tributions. Fig. 4 shows the log—log distribution plots of flight
lengths sampled according to the three different flight models
(r = w = 5 m, and ag = 30°) from the Campus-I traces. We
use MLE to fit aggregated flight lengths to well-known distri-
butions such as exponential, Rayleigh, Weibull, lognormal, and
Pareto distributions. MLE is performed over the z-axis range
over 50 m of each distribution to isolate only the tail behavior.
‘We find that as ag increases, the distribution becomes flatter with
a heavier tail.

Fig. 5 shows the same for the other scenarios under the pause-
based model. Fitting to truncated Pareto is shown separately in
Fig. 6. Each figure shows the distribution and MLE fitting re-
sults over the flight samples over the tail section of the distri-
bution, that is, samples between 50 m and the 0.999-quantile of
each distribution. The Akaike test [35] also quantitatively mea-
sures the best fit among the tested distributions. Tables IV and V
show the results without and with truncated Pareto, respectively.
We separate the results for truncated Pareto mainly for clarity of
presentation and also, more importantly, to isolate the effect of
truncation in proving the heavy-tail tendency of the data. We did
not fit truncated versions of other distributions as their analyt-
ical definitions are not well defined and they are also not used
commonly. By visual inspection, heavy-tail distributions, in-
cluding Weibull, lognormal, Pareto, and truncated Pareto, show
the better fit than the other distributions. The Akaike comparison
test shows that without truncated Pareto, that also quantitatively
measures the best fit among the tested distributions. Table IV
shows Weibull has the best fit for Campus I, Campus II, and
New York City, and lognormal has the best fit for Disney World
and the North Carolina State Fair. When a Weibull distribution
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TABLE IV
AKAIKE WEIGHTS OF EXPONENTIAL, RAYLEIGH, WEIBULL, AND LOGNORMAL
DISTRIBUTIONS AND MLE OF k& FOR WEIBULL DISTRIBUTION,
UNDER THE PAUSE-BASED MODEL

Site Akaike weights Weibull
exp [ Rayleigh | Weibull | logn [ Pareto k
Campus I || 0.0000 [ 0.0000 | 0.9987 | 0.0013 | 0.0000 || 0.39
Campus II|| 0.0000 | 0.0000 | 0.9997 | 0.0003 | 0.0000 || 0.23
NYC 0.0000 | 0.0000 | 0.9997 | 0.0003 | 0.0000 || 0.35
DwW 0.0000 | 0.0000 0.0028 0.9972 | 0.0000|| 0.21
SF 0.0005 | 0.0000 | 0.4811 | 0.5183 | 0.0000|| 0.67
TABLE V

AKAIKE WEIGHTS OF EXPONENTIAL, RAYLEIGH, WEIBULL, LOGNORMAL, AND
TRUNCATED PARETO DISTRIBUTIONS UNDER THE PAUSE-BASED MODEL

‘ Site ‘| Akaike weights |
| exp | Rayleigh [ Weibull | Togn [ Pareto | T.Pareto |
Campus I 0.0000 0.0000 0.0000 0.0000 | 0.0000 1.0000
Campus II 0.0000 0.0000 0.0000 0.0000 | 0.0000 1.0000
NYC 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 1.0000
Dw 0.0000 0.0000 0.0028 0.9970 | 0.0000 0.0002
SF 0.0005 0.0000 0.0035 | 0.0038 | 0.0000 | 0.9928

is fitted, the estimated value of parameter £ is less than 1. Note
that a Weibull distribution with & < 1 is heavy-tailed, and log-
normal and Pareto distributions are heavy-tailed by definition.
Table V shows that all traces except Disney World have the best
fit with truncated Pareto. Disney World still has the best fit with
the lognormal distribution.

In the insets of Figs. 4 and 5, we plot the normalized fre-
quency of each turning angle. Their distributions are close to
uniform in general, although the New York trace seems to have
some biases to particular directions.

TABLE VI
AVERAGE OF SLOPES (WITH STANDARD DEVIATION) FROM THE MLE
FOR TRUNCATED PARETO TO FIT-TO-FLIGHT LENGTHS OBTAINED
BY VARYING FLIGHT EXTRACTION PARAMETERS: 7 AND w
FrROM 2.5 TO 10 m AND @y FROM 15° TO 90°

Rectangular Angle Pause-based

ag = 0° ag = 360°

Campus | -1.53 (0.03) | -1.64 (0.03) | -1.22 (0.11)
Campus 11 -2.27 (0.02) | -2.15 (0.04) | -1.63 (0.11)
NYC -1.62 (0.02) | -1.57 (0.04) | -1.17 (0.10)
Disney World | -2.20 (0.04) | -2.16 (0.08) | -1.85 (0.09)
State fair -2.81 (0.45) | -2.11 (0.18) | -1.76 (0.15)

Table VI shows the average of slopes from the MLE of trun-
cated Pareto and their standard deviation. All the scenarios have
slopes larger than —3 (so o < 2).

The flight-length distribution of State Fair in Fig. 5 appears
close even to a short-tailed distribution such as exponential. This
seems inconsistent with the other data as they show clear sep-
aration from short-tailed distributions. To see if this disparity
comes from heavy truncations due to the small size of the state
fair site (less than 860-m radius), we simulate two instances
of a Levy walk, with width 200 m and the other with 2 km.
Fig. 7 shows the complementary cumulative distribution func-
tion (CCDF) of flight lengths obtained from Levy-walk simu-
lations in two squares. The Levy walk in the small area has
the same truncation problem (phenomenon) as the state fair,
and we find that the flight distribution can fit well even to a
short-tailed distribution. However, when we increase the area,
the same Levy walk has a heavy tail. This indicates that the state
fair data may not be inconsistent with the other data.
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Fig. 7. CCDF of flight lengths obtained from Levy-walk simulations in two
squares: (a) one with width 200 m and (b) the other with 2 km. The Levy walk
in the smaller area appears like Brownian motion.

B. Pause-Time Distribution

We find from our traces that the pause times of our walkers
can be fitted to truncated Pareto well and they have a
heavy-tailed distribution. Fig. 8 shows the pause-time dis-
tributions extracted from our traces. The flight definitions do
not influence the shape of pause-time distributions because
they differ mostly in the number of zero pause time. Even when
we vary r in the pause-time definition, we do not see much
difference in the pause-time distribution patterns. In the plots,
we use the pause-based models.

Power-law pause-time distributions affect the MSD of
walkers as shown in [36] and [37]: Long trapping caused by
heavy-tailed pause-time distributions makes the mobility less
diffusive, sometimes causing subdiffusion. We have more
details in Section I'V-C.

C. Mean Squared Displacement (MSD)

The average distance of a walker at time ¢ from the origin
(i.e., the position at time 0) is called displacement. The MSD is
the square of the average displacement of a random walker. If
a random walker follows Brownian-motion patterns (i.e., with
finite mean and variance of flights and pause times), then its
MSD is proportional to ¢ [9] as governed by the central limit
theorem (CLT). We say such walks have normal diffusion.
However, if flights do not have characteristic scales (e.g., power
law) as in Levy walks, then the MSD of the random walker
is proportional to ¢7, v > 1. This is called super-diffusion. If
Brownian-motion flights are combined with power-law pause
times, then their MSD becomes proportional to t7, v < 1,
which is called subdiffusion. It is also shown that when random
walkers with power-law flights and pause times are confined
within a fixed area, because of truncations of flights, their
MSD shows a dichotomy in which it is super-diffusive up
to some time limits and then becomes normal-diffusive or
subdiffusive [36], [38].

Measuring MSD from real mobility traces is not straightfor-
ward because it is hard to define the “origin” from the traces. A
common technique to handle this is to take the average of MSD
values measured by varying the origin among all locations that
the walker has been at [38], [39]. Specifically, for each scenario,
we compute the following. Given each trace T' from that sce-
nario that consists of an ordered sequence of location samples
(to, posy(to)), where posy(tg) is the two-dimensional position
of the walker at time ¢y in trace T', the MSD(#) of that scenario
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in terms of time interval ¢ is

 Xp iy IP0sz(t + to) — posy(to)|*
= N .

posp(t + to) — posy(to) is a vector subtraction, and | - | is the
norm operator. N = ). n(T"), where n(T') is the total number
of eligible samples t( from trace T'. A sample taken at time % is
eligible if to + ¢ < tI', where ¢ is the time that the last sample
of trace 1" is taken. If tg + ¢ > tz, the contribution of ¢y to
MSD(¢) is zero. We compute MSD(¢) directly from the GPS
traces mapped to the two-dimensional space.

Fig. 9 plots the MSD(¢t) for Campus I, Campus II, New York
City, Disney World, and State Fair. The shape of MSD(¢) in a
log—log scale can be fitted by two lines using the least-squares
method. From the plots, we can see that up to about 1 h, our
participants make super-diffusive mobility (v > 1.15), and after
that, they make subdiffusive mobility (y < 0.80).

The dichotomy of super-diffusion and subdiffusion observed
in our traces is consistent with the finding in [36] and [38]. Since
our GPS traces are daily traces and each trace is obtained within
a specific area, flight lengths are limited and areas have bound-
aries. When ¢ is small (in our case, less than 30 min), the effect of
truncations does not appear. The effect of heavy-tailed distribu-
tions shows up, and the mobility appears super-diffusive. As we
increase time ¢, the truncation takes effect and a walker reaches
aboundary. We also confirmed this pattern using simulation (the
result is not shown). Another significant factor causing the sub-
diffusion is the human tendency to return to the original starting
points. Humans are not truly making random walks, and they
come home in the end of day or come back to one point (like
the entrance and exit in Disney World). This “homecoming”
tendency slows down diffusion excessively, resulting in subd-
iffusion as ¢ increases.

MSD(t) %)

D. Flight Speed

Fig. 10 shows the velocity and flight times in terms of flight
lengths, extracted from all the five scenarios. Flight times and
lengths are highly correlated. From Fig. 10(a), we verify that the
average velocity is not constant, but increases as flight lengths
increase because long flights are usually generated when partic-
ipants use a transportation rather than walking. To reflect this
tendency, our model uses the following relation between flight
times and flight lengths: Aty = Ell-r, 0 < p < 1, where k
and p are constants. In one extreme, when p is 0, flight times
are proportional to flight lengths, and it models the constant ve-
locity movement. In another extreme, when p is 1, flight times
are constant, and flight velocity is linearly proportional to flight
lengths. In our measurement data, the relation is best fitted with
k = 30.55 and p = 0.89 when [ < 500 m, and with &k = 0.76
and p = 0.28 when [ > 500 m.

V. LEVY-WALK MOBILITY MODEL

We are interested in the effect of mobility patterns we ob-
served from our data analysis on the performance of mobile
networks. To this end, we construct a simple TLW model that
generates synthetic mobility tracks reflecting the statistical pat-
terns of human mobility. We use the same random walk model
discussed in Section II. A step is represented by four variables:
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flight length /, direction 6, flight time At¢, and pause time At,,.
Our model picks flight lengths and pause times randomly from
their PDFs p(l) and (At} ), which are Levy distributions with
coefficients « and 3, respectively. The following defines a Levy
distribution with a scale factor ¢ and exponent « in terms of a
Fourier transformation:

oo

1 . o
_ / e—mtm—\ct\ .
27

— 00

fx(z) (6)

For oo = 1, it reduces to a Cauchy distribution, and for o = 2,
a Gaussian with ¢ = v/2c. Asymptotically, for o < 2, fx ()
can be approximated by 1/|z|*T%. We allow ¢, , and 3 to be
simulation parameters. We use a uniform flight direction distri-
bution. We use the speed model used in Section IV.

Using the above model, we generate synthetic (truncated)
Levy-walk mobility traces with truncation factors 7 and 7, for
flight lengths and pause times, respectively, in a confined area
as follows. First, the initial location of a walker is picked ran-
domly from a uniform distribution in the area. At every step, an
instance of tuple (I, 6, Atg, At,) is generated randomly from
their corresponding distributions. If [ and At,, are negative or
I > 7 or At, > 7, then we discard the step and generate a
new step. We repeat this process after the step time Aty + At,,.

09f - |
/
0.8+ / 4
’
o7ty [/ |
1
061 ]
x I
v
x 05F I’ ]
® o4t/ |
1
0.3r3, -+ Levy,0=0.5, t=10min []
0.2k ! - — —Levy,0=1.0, t=10min ||
“i! Levy, 0=1.5, t=10min
o1k - 2~ | Brownian, t=10min -
m— RWP, t=10min
0 T

0 500 1000 1500 2000 2500

x(m)

Fig. 11. CDF of node displacement from its initial position after 10-min travel.
RWP is most diffusive, while BM is least diffusive. The diffusion rates of trun-
cated Levy walks are in between.

Until the end of the simulation, we generate the tuples repeat-
edly. When a flight crosses a boundary of the predefined area,
we allow the flight to be reflected off the wall.

By adjusting « and 3, we can generate mobility traces with
different diffusivity. Note that when « is 2, then the model
becomes BM. Fig. 11 shows the cumulative distribution func-
tion (CDF) of the distance that a mobile is away from its initial
position after the first 10 min of travel. The simulation area is set
to 2 x 2 km?. The truncated Levy-walk models are constructed
by setting the pause-time factor () to 0.5, but varying the flight
length factor («) from 0.5 to 1.5. We set the truncation points
71 = 1 km and 7, = 1000 s and set the scale factors (c) of
flight length and pause-time distributions to 10 and 1, respec-
tively. The BM model uses the same simulation setup and pa-
rameter setting as the Levy-walk model, but sets « = 2. All
models use the same velocity and pause-time model discussed,
and 100 nodes are simulated at the same time. The figure shows
that RWP is most diffusive, while BM is least diffusive. The dif-
fusion rates of the truncated Levy-walk models are in between
these two extremes. As we reduce «, the mobility becomes more
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distributions of TLW with different .

diffusive. We shall see that this disparate diffusion rate of mo-
bility in each model has distinctive effects on the performance
of routing in mobile networks.

VI. IMPACT OF HEAVY-TAIL FLIGHTS ON ROUTING
PERFORMANCE

In this section, we apply TLW to the simulation of DTNs and
MANETS and study the impact of heavy-tail flights on routing
performance in these networks.

A. Routing in Delay-Tolerant Networks

In DTNs, mobile nodes may establish ON and OFF connec-
tivity with their neighbors and the rest of the network. Store-
and-forward is the main paradigm of routing in such networks
where communication transpires only when two devices are in
a radio range and the time duration between two consecutive
contacts of the same two nodes (called intercontact time) is an
important metric.

It is known that the ICT distribution of human walks ex-
hibits a power-law tendency up to some time after which it
shows exponential decay [23]. The result is interesting because
[25] showed by simulation that RWP produces exponentially de-
caying ICT. What is not obvious is the type of mobility pattern
that gives rise to the power-law tendency of ICT distributions.

The earlier measurement studies on ICT (e.g., [22]) report
power-law distributions of ICT with human mobility with slopes
of 0.3 from the University of California, San Diego (UCSD)
and Dartmouth, Hanover, NH, traces [40] and 0.4 from the
INFOCOM trace [22]. TLW can generate the similar ICT
distributions in the similar settings as UCSD and INFOCOM
by adjusting o and . Fig. 12 shows the result. In the UCSD
simulation, we fix the simulation area to 3.5 x 3.5 km2, 7 to
3 km, and 7, to 28 h. The transmission range of each node
is set to a 250-m radius (which is typical for IEEE 802.11b)
for UCSD. For the INFOCOM simulation, we set the area to
1.5 x 1.5km?, 7 t0 200 m, Tp to 1 h, and the transmission range
of each node to a 50-m radius to fit to the transmission range of
the Bluetooth devices used for taking the original traces. These
values are chosen based on the corresponding real traces. In
both simulations, 40 nodes are simulated, and we set the scale
factors (c¢) of flight lengths and pause-time distributions to 10
and 1, respectively.

We also simulate RWP and BM in the same setup as the
UCSD and INFOCOM environments. The BM model uses o =
2, and RWP chooses a random destination uniformly within the
simulation area. All the models use the same pause-time dis-
tribution and velocity model as TLW. All the simulation runs
are ensured to be in their stationary regimes as all the mobility
models have finite pause time and trip durations, and we discard
the first 100 h of simulation results to avoid transient effects. BM
and TLW produce a heavy-tail ICT distribution, while RWP’
s shows an exponential decay. In the UCSD experiment, TLW
produces a better fitting ICT than BM, while both BM and TLW
produce the similar ICT patterns for INFOCOM. In both cases,
TLW can fit both power-law head and exponentially decaying
tail. In the INFOCOM setting, the area is very small compared
to the radio range so that there are a lot of truncations. Thus, in
such a setting, TLW may look like BM (as shown in the state-fair
results of Section IV). This result indicates that TLW is much
more flexible than the other models in generating more realistic
statistical patterns observed in real traces.

To study the impact of diffusivity on the ICT patterns, we run
TLW with various « while fixing 3 to 1. Fig. 12(c) shows the
result. This indicates that the ICT distribution patterns of various
mobility models are closely related to their diffusion rates. In
RWP, the mobility is the most diffusive, and in BM it is the least.
In TLW, the diffusivity is in between, and with a smaller value
of «, it becomes more diffusive and its ICT has a shorter tail.

To see the effect of Levy-walk features on routing perfor-
mance, we simulate one of the most widely studied routing DTN
algorithms called two-hop relay routing [41], where a source
node sends a message (or a sequence of data packets) to the first
node it contacts, and then that first node acts as a relay and de-
livers the message when it contacts the destination node of the
message. We run the protocol under RWP, BM, and TLW with
various «-values. For all the simulations, we assume an infinite
buffer and that message transfers occur instantaneously. These
assumptions are used to isolate the effect of mobility patterns
on the performance of DTN routing. The area of the simulation
is set to the size of UCSD.

Fig. 13 shows the performance of the protocol with one relay
and multiple relays. BM has the heaviest tail distribution of
routing delays, and RWP has the shortest. BM tends to have
much longer delays than any other models because of their slow
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Fig. 13. DTN delay distributions of various mobility models and normalized
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diffusion rate, while RWP, as expected, shows the smallest de-
lays because of high mobility of nodes. TLW shows perfor-
mance in between the two extremes: As we increase «, its delays
get closer to BM’s, and as we reduce «, they get closer to RWP.

We simulate a multiple-copy protocol where the source dis-
tributes the message to the first m relays that it contacts. The
routing delay is the time until any copy of the message is deliv-
ered to the destination. Fig. 13(b) shows the 99% quantile delays
of the same models normalized by their corresponding one-relay
delays as we add more relays. As expected, BM hardly achieves
this goal; the delay does not improve so much as the number
of relays increases since every relay takes a long time to meet
the destination. However, we are surprised to find that all our
Levy-walk models including the one with & = 1.5, which shows
fairly similar delay patterns as BM for one relay case, show al-
most the same improvement ratio as RWP as we add more re-
lays. This implies that while most nodes travel long distances
frequently in RWP, in Levy walks, although not all nodes make
such long trips, there exist with high probability some nodes
within the mobility range of the source nodes that make such
long trips. This contributes to the great reduction of the delays
even with a small number of relays.

B. Routing in MANETs

In this section, we examine the impact of Levy walks on the
performance of MANET routing protocols. We first focus on
the features of mobility that affects the performance of MANET
routing protocols such as hop counts and the duration of routing
paths being connected. These features strongly influence the
routing performance of MANETS. For instance, [42] shows that
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Fig. 14. (a) Hop-count distributions of the shortest path between two randomly
selected nodes undergoing various mobility patterns. The numbers inside the
parenthesis represent the average hop counts. (b) CCDFs of their corresponding
path durations.

data throughput is proportional to path durations within the limit
of link capacity in the network.

Fig. 14(a) shows the hop-count distributions of the shortest
path between two randomly picked nodes in the simulation of
various mobility models and the CCDF of their corresponding
path durations. We use the same simulation setup as discussed
in Section V. The radio range of each mobile is set to 250 m.
We run the simulation for 3000 s. Four hundred pairs of nodes
are selected, and the hop count of each pair is measured and
sampled once whenever they establish a new path. RWP tends to
have very short paths because RWP nodes tend to cluster around
the center of the simulation area [1]. Levy walks and BM tend to
have longer paths than RWP. Because of the less diffusive nature
of these models, nodes tend to stay longer in one location than
RWP.

A path duration is the time period that a path stays connected.
Fig. 14(b) shows the path duration distributions measured under
various mobility models. RWP has the shortest path durations
due to its high mobility; BM has the longest because of slow
diffusivity. The path durations of TLW are in between the two
extremes.

To see the effects of the above-discussed factors on routing
performance, we simulate the dynamic source routing pro-
tocol (DSR) [43] in the same simulation setup as the above
using GloMoSim [44]. In this simulation, we measure the data
throughput of FTP connections over 600 node pairs randomly
selected. In each run, one source-and-destination pair is se-
lected. The link bandwidth in these simulations is set to 2 Mb/s.
Fig. 15(a) and (b) shows the CCDF of throughput measured in
low- and high-node-density network environments for various
mobility models. For the high-density environment, we use
100 nodes in a 1 x 1 km? area with = 500 m, and for the
low-density environment, a 2 X 2 km area with 3 = 1 km. We
use the same values for the other simulation parameters as in
the simulation run for Fig. 14.

In general, both hop counts and path durations have signif-
icant impact on routing throughput. Since each run contains
only one connection, there is no effect of interference other than
self-interference—the interference caused by the nodes in the
same path. Typically, the influence of hop counts itself on data
throughput gets less emphatic as hop counts increase because
self-interference is limited only within a few hops. However, it
is clear that as a path gets longer, its path duration is likely to
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Fig. 15. (a) CCDF of FTP throughput in a low-node-density simulation. (b) CCDF of FTP throughput in a high-node-density simulation. (c) Probability of estab-
lishing a route between two randomly selected nodes under the low- and high-node-density simulations.

reduce because of higher probability of disconnection. Path du-
rations are a significant determinant of data throughput in our
simulation, which can be seen from the similarity of Figs. 14(b)
and 15(a).

In the low-density simulation, we confirm that the node pairs
with the best throughput around the tail of the throughput CCDF
tend to have long path durations. BM and TLW have an order
of magnitude higher throughput than RWP. However, around
the head of the CCDF in the figure, BM and TLW show a sig-
nificantly less number of node pairs with nonzero throughput.
This is because the number of successful path connections is
much less for BM and TLW. In Fig. 15(c), we plot the connec-
tion probability of node pairs, the probability that two randomly
selected nodes successfully establish a path between them. The
connection probabilities of BM and TLW are around 50%. The
nodes of BM and TLW with large « likely incur more discon-
nected islands because of low mobility. On the other hand, while
RWP nodes have better connectivity probability around 80%,
their throughput tends to be much lower than that of the other
models. These factors collectively cause BM and TLW to have
a heavier tail throughput distribution. Thus, when examining
network performance under more realistic mobility models, we
need to examine the entire distribution of performance instead
of single numbers such as average or median values, which are
much less meaningful under power-law distributions of perfor-
mance metrics of interest. Under the high-density network sim-
ulation, all mobility models achieve 100% connection proba-
bility. Even in this environment, the data throughput under BM
and TLW are higher than that of RWP because of their longer
path durations.

VII. RELATED WORK

Recently, measurement studies of detailed human mo-
bility patterns have been conducted. At Dartmouth [33] and
UCSD [40], mobility traces of users are collected based on the
association information of mobile handheld devices (e.g., PDAs
and VoIP phones) that access wireless LAN access points (APs).
However, these traces are inherently restricted by the locations
of the deployed APs, and thus estimated movements in between
access points might be incorrect because of relatively long
distance among APs. Due to the coarse granularity of the
measurement methodology, these traces are not adequate to
describe detailed human mobility trajectories. In other groups,
human contact patterns are studied by using iMotes [22] or

information of class schedules and class rosters [45], but they
do not generate detailed or accurate mobility trajectories suit-
able for our study. Recently, Brockmann et al. [16] analyzed
human traveling patterns from the circulation patterns of bank
notes, in the scale of several hundred to thousand kilometers,
and proved that human long-distance traveling patterns at a
macro scale show Levy-walk patterns. It was also reported by
Gonzales et al. [17] that humans tend to perform Levy walks,
in the scale of hundreds of meters, within heterogeneously
bounded areas from the analysis of location information that is
taken when mobile phone calls are made or received or sam-
pled at every 2 h. However, considering real mobile network
deployments, the mobility patterns over large scales covering
several hundred meters to several hundred kilometers are too
large to apply to the mobility modeling for mobile network
simulations. Combined with our results that show the same
result but within a much smaller scale, we can confirm the
scale-free nature of human mobility. Regarding the scale-free
nature of human activity, Barabasi [46] reports that various
human-initiated activities including communications and work
patterns are better approximated by a heavy-tailed distribution,
but his work does not include human mobility.

VIII. CONCLUSION AND DISCUSSION

In summary, this paper finds that human walks at outdoor set-
tings within less than 10 km contain statistically similar features
as Levy walks including heavy-tail flight and pause-time distri-
butions and the super-diffusion followed by subdiffusion, which
is an indication of heavy-tail flights in a confined area. Com-
bined with the results from [16] and [17], our results show a
scale-free nature of human mobility even beyond the scale of a
few thousand kilometers. Using a simple truncated Levy-walk
model we constructed, we are able to recreate the power-law dis-
tribution of intercontact times that earlier studies have observed
from human mobility. Routing performance in a mobile network
undergoing Levy walks has distinctive features. In DTNs, while
their routing delay distribution is heavy-tailed, use of multiple
relays for two-hop relay routing results in drastic performance
improvement. This is because there exist, with high probability,
some nodes within the mobility range of a source node that make
long trips. The performance of MANET routing is a compli-
cated function of various parameters such as hop counts, con-
nection probability, and path durations. TLW tends to have more
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hop counts and longer path durations (or path survivability)
than RWP. However, with TLW, the network is more likely
to be disconnected. We also observe a heavy-tail distribution
of throughput, so the performance of MANET routing cannot
be easily characterized by single numbers such as average or
median.

Because of space constraints, there are many research issues
that are not addressed in this paper. In particular, it is interesting
to further explore the cause of scale-free human mobility. From
our study, we find human intentions instead of geographical ar-
tifacts play a major role in producing heavy-tail tendencies. We
also conjecture that this is caused by the power-law tendency
of human interests or popularity of locations people visit. More
studies to confirm this conjecture are required. Our treatment on
the impact of Levy walks (or mobility) on network performance
is limited because of space constraints. Some omitted results in-
clude the impact of a and  on routing performance and a study
on delay and throughput tradeoffs caused by Levy walks, both
of which are very interesting. Characterizing intercontact time
analytically using parameters of a Levy-walk model is also in-
triguing. In addition, our mobility characteristics ignore the in-
terdependency of humans (or nodes) such as grouping. Thus, it
would be interesting to explore techniques to characterize this
property and develop a model that captures it.
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