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Abstract—Many empirical studies of human walks have re-
ported that there exist fundamental statistical features commonly
appearing in mobility traces taken in various mobility settings.
These include: 1) heavy-tail flight and pause-time distributions;
2) heterogeneously bounded mobility areas of individuals; and
3) truncated power-law intercontact times. This paper reports
two additional such features: a) The destinations of people (or
we say waypoints) are dispersed in a self-similar manner; and
b) people are more likely to choose a destination closer to its
current waypoint. These features are known to be influential
to the performance of human-assisted mobility networks. The
main contribution of this paper is to present a mobility model
called Self-similar Least-Action Walk (SLAW) that can produce
synthetic mobility traces containing all the five statistical features
in various mobility settings including user-created virtual ones for
which no empirical information is available. Creating synthetic
traces for virtual environments is important for the performance
evaluation of mobile networks as network designers test their
networks in many diverse network settings. A performance study
of mobile routing protocols on top of synthetic traces created
by SLAW shows that SLAW brings out the unique performance
features of various routing protocols.

Index Terms—Delay-tolerant network, human mobility, Levy
walk, mobile ad hoc network, mobile network, mobility model.

I. INTRODUCTION

T HE PERFORMANCE of mobile networking applications
highly depends on the movement patterns of wireless de-

vice holders. As wireless devices are often carried by people,
understanding human mobility patterns contributes to an accu-
rate performance modeling and prediction of protocols used for
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these networks. In particular, these patterns can be used for real-
istic simulation of human-assisted mobile networks. Since sim-
ulation is a primary means of performance evaluation in mobile
networking, mobility models reproducing realistically inherent
and invariant mobility patterns of people are important for ac-
curate performance evaluation.

The goal of this paper is to develop a human mobility model
that abstracts out many geographically specific details that
might change from one setting to another, and that faithfully
reproduces fundamental and invariant statistical properties of
human mobility. Because users of a mobility model may test
their protocols in diverse mobility environments including
user-created virtual settings, often many geographically spe-
cific details are not available. Therefore, the model must be
simple to manipulate. If users are required to provide about
each mobility scenario many specific details that are available
only from real traces, such a mobility model is not useful.
It is desirable that many diverse location contexts, hotspots,
and popular gathering places and their related mobility in-
formation such as transition probabilities from one place to
another are automatically generated only from a simple set of
input parameters, yet the resulting mobility traces must contain
sufficient “realism.” Note that it is hard to define realistic
mobility for such virtual environments. We address this realism
by representing faithfully the fundamental statistical properties
commonly observed in many real mobility traces of people
independent of their mobility settings.

There have been several recent studies [1]–[3] reporting the
discovery of fundamental statistical properties of human mo-
bility from real traces of human mobility such as GPS traces
of human walks1 in various locations [1], cell-phone location
tracking [2], recordings of wireless device associations with
their access points [5], and tracking of bank notes [3]. The fol-
lowing list presents three statistical features observed by the
above studies (F1–F3) as well as two new features (F4–F5) that
are reported in this paper for the first time.

F1) Heavy-tail flights and pause-times: It is shown that
the lengths of human flights have a heavy-tail distribu-
tion [1]–[3]. A flight is a Euclidean distance between
two waypoints visited in succession by the same person
in the same daily trip, and waypoints are the locations
where a walker stops for longer than a certain period
of time before moving again. Waypoints are intuitively
considered as destinations where people stop their
travel. Several studies (e.g., [1] and [5]) also show that

1We use the terminology human walks to represent a general mobility
involving humans in a predefined relatively small region such as university
campus, airport, shopping malls, and a segment of a city. Mobility in this region
is typically carried out by walking, jogging, and running, but can occasionally
involve use of transportation such as a car, a bus, and subways.
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the pause-time distributions of human walks follow a
truncated power-law distribution. Pause-time is the time
duration that a person spends in a waypoint.

F2) Heterogeneously bounded mobility areas:
Gonzalez et al. [2] report that people mostly
move only within their own confined areas of mobility
and that different people may have widely different
mobility areas.

F3) Truncated power-law intercontact times (ICTs): The
distribution of intercontact times—that is, the time
elapsed between two successive meetings of the same
persons—can also be modeled by a truncated power-law
distribution [4], which consists of a power-law head fol-
lowed by an exponentially decaying tail after a certain
characteristic time [6].

F4) Self-similar waypoints: We report in this paper that the
waypoints of humans can be modeled by self-similar
points. The self-similar dispersion of waypoints intu-
itively implies that people are always more attracted to
more popular places, their visiting destinations tend to
be heavily clustered, and such clustering patterns are
persistent in various spatial scales.

F5) Least-Action Trip Planning (LATP):. We report in this
paper that people are more likely to visit destinations
nearer to their current waypoint when visiting multiple
destinations in succession.

All these properties (F1–F5) are intrinsically related to each
other. We show in this paper that people planning their daily
trips using LATP (F5) on top of self-similar waypoints (F4)
produce heavy-tail flight patterns (F1). It is shown in [7] that
heavy-tail flights within a confined area (F2) result in truncated
power-law ICTs (F3). Note that self-similar waypoints and
power-law flight distributions are related, but not necessarily
equivalent. For instance, one may generate power-law flights
by selecting a random distance from a power-law distribution,
and then arbitrarily pick a destination randomly among the
points located at the radius of distance from the current way-
point, as it is done in truncated Levy walk (TLW) [1]. When
TLW runs in an infinite space, this may provide self-similar
waypoints [8], [9]. However, a random selection of destinations
within a confined area of mobility does not preserve self-simi-
larity of waypoints. Conversely, one may generate a self-similar
point process of waypoints. However, if the sequence of visits
over these self-similar destinations is not judiciously selected,
the resulting flights are not necessarily power-law.

It is also important that these properties are strong perfor-
mance determinants of mobile networks such as delay-tolerant
networks (DTNs). For instance, ICTs are a very important factor
to DTN routing as ICTs decide the delays in meeting a dis-
tant node, so short ICTs imply short routing delays. Self-sim-
ilar waypoints express some social contexts such as gathering
places among people that share common interests or those in
the same community. These contexts are important as they influ-
ence meeting probabilities and periodicity among people. The
diffusivity of random walks induced by the heavy-tail flights
also has a unique impact on the link lifetimes and intercon-
tact times of mobile networks [1]. Therefore, for an accurate
performance evaluation of mobile networks, a mobility model

TABLE I
EXISTING ROUTING MODELS CAN BE CATEGORIZED INTO FOUR GROUPS.

TYPICAL MODELS IN EVERY CATEGORY HAVE BEEN LISTED. NONE

OF THE EXISTING MODELS HAS ALL THE CHARACTERISTICS

OF HUMAN WALKS. “?” MEANS THAT IT IS UNCLEAR

FROM THE MODEL DESCRIPTION

reproducing synthetic mobility traces with a realistic represen-
tation of these properties is important.

Unfortunately, none of the existing mobility models for
mobile networks produces mobility traces that possess all
these properties. For instance, no mobility model, except
TLW [1], explicitly models heavy-tail flights. Random mobility
models such as TLW, random waypoint (RWP), and Brownian
motion (BM) do not produce self-similar waypoints, nor do they
model heterogeneous mobility ranges of individuals. Although
many models (e.g., [5] and [10]–[14]) explicitly model hotspots
or grouping effects, they do not produce heavy-tail flights or
ICTs. Those producing heavy-tail ICTs (e.g., [6] and [15]) also
do not necessarily model heavy-tail flights. Table I summarizes
the statistical properties modeled by many existing mobility
models.

In this paper, we present a new mobility model, called Self-
similar Least-Action Walk (SLAW), that produces synthetic mo-
bility traces containing all five properties. This is the first such
model. In developing SLAW, we heavily rely on our GPS traces
of human walks [16] including 226 daily traces collected from
101 volunteers in five different outdoor sites. In particular, many
of these traces are gathered among people sharing common in-
terests such as students in the same university campuses and
tourists in a theme park. By faithfully representing the proper-
ties present in these traces, SLAW can represent social contexts
among walkers manifested by visits to common gathering places
and walk patterns therein.

SLAW mainly takes two input parameters, a Hurst parameter
value [17] and a weight on distance in performing LATP, along
with other trace-specific information such as the size of the mo-
bility areas and the number of mobile nodes. The Hurst param-
eter value determines the degree of self-similarity for waypoint
dispersion. The weight factor for LATP determines the likeli-
hood of visiting nearby destinations when a node has multiple
candidate destinations. Users of the model do not need to extract
these parameter values from real traces. Instead, we provide the
ranges of values for users to choose from for the parameters.
The ranges are determined by the statistical properties of their
corresponding properties represented by the parameters. For in-
stance, the Hurst value must be in between 1/2 and 1 to ensure
the self-similarity of waypoints.
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People typically visit the same places every day such as of-
fices and restaurants while making some infrequent irregular
trips caused by exceptions such as appointments. By modeling
power-law flights, self-similar waypoints, and LATP, SLAW can
realistically express regular as well as spontaneous trip patterns
of human daily mobility. While other works [18]–[20] model
the regularity of daily trip patterns of humans, none of the ex-
isting work reflects realistic statistical properties appearing in
real human walks.

To measure the impact of these mobility patterns on the
performance of mobile network protocols, we study the per-
formance of DTN routing under various mobility models,
including SLAW. Our study indicates that SLAW realistically
captures the unique performance properties of many existing
DTN routing protocols. More specifically, it provides a clear
performance differentiation between stateless and stateful
protocols where stateful protocols require and utilize past
contact information among nodes to predict future contact
probability and stateless protocols do not. Examples of stateful
protocols are abundant (e.g., [21]–[23]). SLAW induces more
frequent and regular contacts among nodes that result in more
predictable and shorter routing delays for those protocols. The
applications of our work go beyond mobile networks. SLAW
can be an important tool for emulating human walk behaviors
in diverse application scenarios that can be applied to accurate
urban planning, traffic forecasting, and biological and mobile
virus spread analysis.

The remainder of this paper is organized as follows.
Sections II and III respectively present related work and our
findings on self-similar waypoints and LATP. Sections IV and
V describe SLAW, the validation of SLAW, and our routing
protocol study. Section VI presents our conclusion.

II. RELATED WORK

Table I shows four categories of existing models. RWP,
Random Direction (RD), BM, or Random Walk (RW) and
TLW [1] are pure random mobility models. In pure random
mobility, each waypoint is chosen randomly based on some
probability distribution. The Markovian Waypoint (MWP) [12]
and Gauss–Markov (GM) model [24] are variants of the
above, as they implement some Markovian transition probabil-
ities among waypoints or prohibit unrealistic abrupt velocity
changes. In RPGM [13], mobile nodes form several groups,
each of which contains one leader. The leader moves according
to the RWP, and all other members of a group move along their
leader.

Other models consider geographical constraints or social
contexts and collective behaviors. The Obstacle Model (OM)
with geographical constraints [26] incorporates obstacles for
emulating more realistic pathways of humans around obstacles
using Voronoi diagrams. The Freeway and Manhattan mobility
models [25] emulate pathways by restricting the movements of
mobile nodes to follow the pathways.

Modeling hotspots is another way to represent collective
human behaviors. The Dartmouth model [5] estimates the
locations and movement paths of mobile nodes from real data
sets. Based on the estimated information on the users, hotspot

regions and the transition probability for moving between
hotspots are extracted. This model is developed using the trace
data collected by analyzing the access patterns of wireless
access points in a university campus. It requires a considerable
amount of effort to generate the mobility model because hotspot
locations and transition probabilities between hotspots must be
given as input (instead of being generated). Thus, it is very hard
to change the walkabout areas, the number of nodes, and the
locations of hotspots without any corresponding real data sets.

Some hotspot models [10], [11] use scale-free networks [27].
Using the preferential attachment theory [28], a set of attractors
is established, where attractors are either landmarks or nodes.
For instance, Clustered Mobility Model (CMM) [11] is a good
example. It first divides the simulation area into a number of
subareas and uses them as attractors. Mobile nodes are assigned
to a subarea using preferential attachment. The attractiveness of
one area is determined by the current number of nodes assigned
to that area.

ORBIT [14] randomly creates a specified number of clusters
within a given area, and each node is assigned to a subset of
clusters. A node moves only among its assigned clusters. The
movements between and within clusters are random irrespective
of any properties of clusters (e.g., size, distance). ORBIT ex-
plicitly models the heterogeneously bounded walkabout areas
of mobile nodes. ORBIT does not capture self-similar points,
and next destinations are selected uniformly at random. Thus, it
lacks the regular patterns present in daily human walks.

Modeling social relationships among people is an inter-
esting way to express mobility patterns. The models proposed
in [15], [29], and [30] first construct a social interaction matrix
that quantifies the degree of attraction among people. The
matrix is then used for computing the transition probability of
a person to move from one location to another. These models
are based on the intuition that people are attracted to locations
where socially close people are gathered around. However, this
intuition is not verified.

Hsu et al. [31] incorporate to a random walk model the ten-
dency to return to home after some period of time. Using their
model, they show the probability of meeting among nodes that
can be useful for the performance analysis of mobile networks.
However, this model does not represent the realistic statistical
patterns of human mobility.

III. MEASUREMENT STUDY OF HUMAN WALKS

A. GPS Data

We use the same data used in [1]. We describe the data briefly,
but for more detailed information, the readers can refer to [1].
Garmin GPS 60CSx handheld receivers are used for data col-
lection, and they are Wide Area Augmentation System (WAAS)
capable with a position accuracy of better than 3 m 95% of the
time in North America. The GPS receivers automatically record
their current positions at every 10 s into a daily track log. The
total number of traces from these sites is over 226 daily traces
containing more than 200 000 flight samples. The participants
in Campus II, New York City (NYC), Disney World (DW), and
State Fair (SF) traces are randomly chosen, while those from
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Fig. 1. (a) Campus-II waypoints, and (b)–(d) the bursty dispersion
of Campus-II waypoints over different scales. The areas shown are
(a) 9781� 20902 m , (b) 4800� 4800 m , (c) 1200� 1200 m , and
(d) 300� 300 m . Different colors are used for different daily traces.

TABLE II
STATISTICS OF COLLECTED MOBILITY TRACES FROM FIVE SITES. THIS TABLE

SHOWS THE NUMBER OF PARTICIPANTS, THEIR DAILY TRACES, AND

30-s AVERAGE SAMPLES. IT ALSO SHOWS TIME AND

GEOGRAPHICAL INFORMATION

Campus I are students from the same department. Table II shows
the summary of our daily traces.

The spatial resolution of human mobility traces used in other
studies [32] is very low since their traces are collected using
association traces to WiFi access points [33], [34] or cellular
towers or base stations [2]. The location errors of their data are at
most a few hundred meters. Needless to say, the banknote trace
data [3] have higher location errors. Compared to those data, our
data have much more detailed representations of human walks
as they are taken using GPS at every 10-s interval in a few meters
scale

B. Self-Similar Waypoints

In [1], we showed that the power-law slopes of the heavy-tail
flight distributions from our traces are different from one site
to another. This implies that the patterns of human mobility are
highly influenced by the geographical contexts such as locations
of their destinations. To analyze this behavior in more detail, we
register the locations from the GPS traces where participants
stop for longer than 30 s within a radius of 5 m, and we call
them waypoints. Fig. 1 shows the waypoints aggregated from
all traces from Campus II over decreasing scales. We can visu-
ally inspect that the waypoints are dispersed in a bursty manner
forming clusters. People tend to swarm near to a few popular
locations, and their popularity measured by the number of way-
points within the swarms of waypoints shows high burstiness.

Fig. 2. Measuring aggregated variance of waypoints aggregated from all walk
traces. We divide the area by nonoverlapping � by � squares, and count the
number of waypoints registered in each square and then normalize the sampled
count by the size of the unit square. We compute the normalized variance as we
increase �.

Moreover, the burstiness does not disappear as the scale varies,
meaning that the waypoint dispersion shows some degree of
self-similarity.

Formally, a stochastic process is called self-similar or
long-range-dependent if its auto-correlation function decays
slowly [35]. Intuitively, this slow decay indicates a high degree
of correlation between distantly separated points of the process.
Self-similarity is usually quantified by the Hurst parameter, and
several methods for measuring this parameter from traces exist
in literature [36]. In what follows, we use two such well-known
methods to quantify the self-similarity of the waypoint disper-
sion in our traces, namely the aggregated variance and the R/S
methods.

In the aggregated variance method, we divide the site map by
a grid of unit squares (initially of 5 5 m ), count all the way-
points within each unit square, and then normalize the count by
the area of the unit square. Then, we measure the variance in
these normalized count samples. Fig. 2 illustrates the method.
If there exists long-range dependency in the samples, the aggre-
gated variance should not decay faster than 1 in a log-log scale
as we increase the size of the unit square. To see this, we plot
aggregated variance in a log-log scale as we increase the unit
square size and measure its absolute slope . The Hurst param-
eter of the samples is defined to be . The sample data
are said to be self-similar if the Hurst parameter is in between
0.5 and 1. Aggregated variance can also be computed over one
dimension by mapping waypoints to the - or -axis of the map.

Fig. 3 shows the Hurst parameter measured from the aggre-
gated waypoints of Campus II. These values show a self-simi-
larity with a Hurst value larger than 0.7. Fig. 4 shows the Hurst
parameter values measured from the aggregated variance test
using the aggregated traces of each site over one-dimensional
( and ) and two-dimensional spaces. All values except NYC
are over 0.6. We conjecture that the aberration of the NYC traces
comes from the small number of waypoints relative to the size
of the site.

We also observe that the waypoints registered in each indi-
vidual trace are self-similar. For each trace, we perform the ag-
gregated variance test on its waypoints. Fig. 5 shows the Hurst
parameter values of individual traces from the five sites by the
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Fig. 3. Hurst parameter estimation of waypoints registered in all Campus-II
traces by the aggregated variance method. (a) 1-D stripe. (b) 2-D grid.

Fig. 4. Hurst parameter values (with 95% and 99% confidence interval) of way-
points extracted from the aggregated traces of each site using the aggregated
variance method. Their values indicate the self-similarity of waypoints.

aggregated variance method. Their -values are slightly less
than those from the aggregated waypoints shown in Fig. 4. This
also confirms the self-similarity of waypoints as the burstiness
gets intensified as individually bursty traces are superimposed
together.

In the R/S method, for a one-dimensional data set
with partial sum ,

the R/S statistic, or the rescaled adjusted range, is given by

where is sample variance. For a two-dimensional
point process data set, the number of points
(the size of a unit square is chosen to be identical with
that of the aggregated variance method), with partial sum

, the R/S statistic can be modified
as follows:

where is sample variance of data.

Fig. 5. Hurst parameter values (estimated by the aggregated variance method)
of waypoints registered in each individual trace of the five sites. All traces
show a tendency of self-similarity. (a) Campus II. (b) Campus I. (c) State Fair.
(d) Orlando. (e) New York City.

Fig. 6. Hurst parameter estimation of waypoints registered in the Campus-I
traces by the R/S method. (a) 1-D (�-axis) stripe. (b) 2-D grid.

Fig. 6 shows the Hurst parameter estimated from the
Campus-I traces by the R/S method, and Fig. 7 shows the
Hurst parameter values of all traces by the R/S method, which
confirms the self-similarity of waypoints. The average Hurst
parameter values estimated from the two tests are summarized
in Table III.

C. Gap Distributions

Flights are line trips over these waypoints. The order in which
a walker visits these waypoints determines his flight patterns.
Then what aspects of self-similar waypoints induce a heavy-tail
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Fig. 7. Hurst parameter values (with 95% and 99% confidence interval) of way-
points extracted from the aggregated traces of each site using the R/S method.
Their values indicate the self-similarity of waypoints.

TABLE III
ESTIMATED HURST VALUES BY THE AGGREGATED VARIANCE AND R/S

METHODS. BOTH METHODS CONFIRM THAT THEY ARE ALL SELF-SIMILAR

flight distribution? To find this relation, we study the character-
istics of the “gaps ” formed among these waypoints.

We first examine the relation between one-dimensional self-
similar points and their corresponding gap distribution, and later
we generalize our analysis to two-dimensional cases through
simulation. Consider a process dispersing a set of points over
one-dimensional space. Let be the number of points over a
line interval ( and ). In other words, is a point-count
sequence over a small interval . The self-similarity of point
counts can be manifested in several equivalent ways. First,
the aggregated variance of , which is a variance of
a new series by averaging the original series for nonover-
lapping blocks consisting of elements, replacing each block
by its mean, has an asymptotic form of

as . The Hurst parameter can be expressed as
. Second, the power spectrum of has

noise around the origin, that is, as
.

The gap (interval) between two points can be measured as fol-
lows. We first make small enough to hold at most one point
and define the distance between any two immediately neigh-
boring points as gap. Let be the probability density func-
tion of a random variable representing a gap among the self-
similar point process .

Theorem 3.1: Self-similar points over one-dimensional space
induce power-law gaps, that is, if
as , then as .
Furthermore, .

Proof: Due to the space limit, we provide the following
proof sketch. The proof is adapted from [37] and [38].

From [39], we can have the following relation between
and the autocorrelation function of :

(1)

where is the variance of .
From (1), since .
A correlation function of is defined as a condi-

tional probability to have a point at , given that a point occurs
at . It is asymptotically the same as the autocorrelation
function of . By definition, can be rep-
resented as follows [40]:

(2)

(3)
...

(4)

where , and is the Kronecker delta
function, which becomes 1 when , otherwise 0.

The Fourier transform of the last equation gives a power
spectrum of . Thus, . Let

be an asymptotic function of

(5)

Since as .
Since , the power spectrum of has noise.

If we set , then from (5), . Note that
the inverse Fourier transform of , where is
a constant, is asymptotically . Therefore,
as . Since is asymptotically power-law,
and it proves .

So far, we provided analytical evidence that gaps over
self-similar waypoints over one-dimensional space induce
power-law gaps. Since it is hard to define two-dimensional gaps
as well as “neighboring” points in 2-D, researchers [41] have
shown empirically that two-dimensional gaps over self-similar
points have power-law distributions using Delaunay triangula-
tion. In these studies, Delaunay triangulation is commonly used
to measure two-dimensional gaps [41] as it practically identifies
the neighboring points. Formally, Delaunay triangulation for
a set of points in the plane is a triangulation such
that no point in is inside the circumcircle of any triangle in

.
We perform a Delaunay triangulation over the waypoints

extracted from our traces. To illustrate our process of analysis,
Fig. 8 shows Delaunay triangles on top of a daily trace of one
participant, and in the inset, the complementary cumulative
distribution function (CCDF) of the length of triangle sides
and flights extracted from the same trace. It is visually striking
that the Delaunay triangles and flight patterns and their corre-
sponding distributions are very similar. We explore this point
further in the Section III-D.
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Fig. 8. Delaunay triangulation of waypoints extracted from one daily trace of
Campus II. The measured flights involving the waypoints coincidentally re-
semble the sides of the triangles. In the inset, the CCDFs of the lengths of tri-
angle sides and the flights from the same trace are plotted. The CCDF of flights
and gaps are also closely matching.

Fig. 9. (a) � and � measured with 1-D projected waypoints from traces of
Campus II. (b) � and � measured over synthetic 2-D waypoints.

We measure the power-law slope of the aggregated vari-
ances of waypoints extracted from the GPS traces and
the power-law slopes of the CCDF of their corresponding gap
distributions . As we proved, we observe that the values of

from real traces projected to 1-D follow 1 as shown in
Fig. 9(a). For 2-D traces, we find that the values of from
real traces are close to 1.2. The margin of errors in 2-D may
arise from truncations caused by confined measurement areas
as the truncations may significantly distort the power-law slope
visible at the body of distribution. We also perform Delaunay
triangulation on top of synthetically generated self-similar
points using a simplified fBm technique [16] over a two-di-
mensional area and measure and . For each Hurst parameter
value , we generate 10 synthetic waypoint maps. Fig. 9(b)
shows that with a similar margin of errors.

D. Relation Between Heavy-Tail Flights and Gaps Over
Self-Similar Waypoints

In this section, we examine the hints for how gaps over self-
similar waypoints are related to heavy-tail flights. We perform
Delaunay triangulation on each individual daily trace in our data
and aggregate the lengths of all the resulting triangle sides into
a single CCDF. Fig. 10 plots the result along with the CCDF
of flights from the traces. The similarity in the shapes of the
two CCDFs is clearly visible. People do not consciously con-
sider Delaunay triangles when they plan their trips over multiple
destinations. However, the similarity between the gap and flight

Fig. 10. Delaunay triangulation is performed on all individual daily traces. The
line segment lengths in Delaunay triangles are aggregated, and their CCDFs are
plotted for different walkabout sites. The CCDF of flights obtained from the
corresponding traces are also plotted for comparison.

distributions suggests that there might be a connection between
the sequence of visits to multiple destinations (i.e., waypoints)
and gaps among self-similar points. Since Delaunay triangula-
tion maximizes the minimum angle of all the angles of the tri-
angles in the triangulation, they tend to avoid skinny triangles.
By avoiding skinny triangles, these triangles are formed using
nearby points rather than farther points. Thus, we conjecture that
the flight traces may have similar tendency: They are more likely
to visit nearby destinations before visiting farther destinations.
We explore this conjecture further in Section III-E.
E. Least-Action Trip Planning

The similarity in the distributions of the gaps and flights
suggests interesting aspects about the order in which a walker
visits for a given set of waypoints. Obviously, people are
not conscious about gaps when they travel. However, as we
can see from Fig. 8, Delaunay triangles are formed among
“neighboring” waypoints as Delaunay triangulation produces a
planar graph. This may imply that people tend to minimize the
traveling distance. Intuitively, when people are to visit multiple
destinations located at different distances, people often strive
to minimize the total distance of travel. They do this rough
minimization by visiting nearby destinations before visiting
farther destinations instead of visiting father destinations first
and then coming back to nearby destinations.

In fact, this “greedy” way of trip planning is similar to a
heuristic to the traveling salesman problem whose objective is
to minimize the total distance of travel and aligns well with
the least-action principle of Maupertuis [42]. Intuitively, the
least-action principle conjectures that all the objects in the uni-
verse move toward the direction of minimizing their discomfort.
This principle is also used to explain how people make their
walking trails in public parks [43].

In our particular situation, this discomfort can be considered
the traveling distance. Note that it is entirely possible that people
may also bypass nearby unvisited destinations to get to farther
destinations and then come back to the nearby ones. This may
happen when people have prior engagements with high-priority
or time-critical tasks so that they may have to attend to them first.
Therefore, there might be the tradeoff between the importance
of attending to those special events and the discomfort of trav-
eling longer distances. In this section, we analyze this tradeoff.

We first measure the amount of weight that people put on dis-
tance when choosing their next destinations. We estimate this as
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Fig. 11. From the GPS traces of 100 participants, we measure the percentage of
flights meeting the least-action criterion. We also plot the case when we exclude
those flights whose length is less than 10, 20, and 30 m. (a) � � ���. (b) � � ���.

follows. We first measure the flight-to-nearest-waypoint (FNW)
ratio. For a given flight from to , suppose is the nearest un-
visited waypoint from . The FNW ratio is the ratio of
over . We then define the least-action criterion: For a
given flight, it tests if its FNW ratio is less than some threshold.
Fig. 11 plots the percentage of flights meeting the least-action
criterion in real traces for all participants when the threshold
ratio is less than 2.

The FNW test measures the number of occurrences in each
daily trace that a person visits the waypoints located within

times the distance to the nearest unvisited waypoint. It mea-
sures how well people meet the criterion when they choose next
waypoints. Here, we only consider unvisited waypoints in per-
forming the FNW test, but there is possibility that the endpoint
of a flight coincides with a previously visited waypoint. How-
ever, among all the waypoints registered in our traces, we con-
firm that only two flights return to the previously visited way-
points. This can be explained as follows. Although people might
come back to the same place repeatedly in a day, they do not nec-
essarily come back to the exact spot in space and stop there to be
registered as waypoints. Since the resolution of GPS readings is
in meters, these cases are very rare. Therefore, considering only
the unvisited waypoints for does not have much impact on the
accuracy of the FNW test.

On average, 58% of flights meet the criterion. However,
people are less sensitive to the distance when next destinations
are all nearby. Thus, if we exclude the flights whose length
is less than a short distance (say 30 m), we get more than
88% of flights meeting the criterion on average. We also tried
other distances such as 20 and 10 m and also varied to a
smaller ratio (1.5). All the measurements produce around 80%
flights meeting the criterion as shown in Fig. 11. This indicates
that most people in our traces may have used distance as an
important metric for deciding the next waypoint.

We construct a new trip planning algorithm called LATP that,
given a set of waypoints to visit, decides the order in which a
person visits them. Algorithm 1 gives a pseudocode of LATP.
The algorithm selects a next unvisited waypoint to visit based on
a probability function , which uses a weighted function

. is the distance from the current waypoint to
an unvisited waypoint , and is a constant. If is larger, then
the algorithm is more likely to choose the nearer unvisited way-
point, and if it is zero, then it randomly chooses the next way-
point. LATP finishes when it visits all the unvisited waypoints.
Visiting only unvisited waypoints is justified because waypoints

are heavily clustered due to their self-similarity. People visiting
the same hotspots repeatedly in a day are emulated by having
them visit unvisited waypoints in close proximity to each other.
This emulates repeated visits to the same hotspots because even
if people visit the same hotspot repeatedly in a day, their exact
GPS locations can be slightly different despite being in the same
cluster.

Algorithm 1: Least-action trip planning (LATP) algorithm
with a distance weight function

: set of all vertices (waypoints)
: set of all visited vertices

: starting vertex
: current vertex

while do
Calculate distances to all unvisited vertices,

for all
Calculate probability to move to all unvisited vertices,

for all

Choose a next vertex according to the
probabilities

end while

Fig. 12 shows the resulting flight distributions obtained from
this experiment with various values of superimposed with the
flight distribution obtained from the traces of Disney World and
New York City. The other sites show similar trends. Visually,
all distributions obtained from LATP fit extremely well to the
real flight distributions, especially when is between 1 and 3.
The figure shows the difference of arithmetic sums between the
LATP flights and real flights (marked as errors). It shows that
when is equal to 3, the difference is less than 2% in Disney
World traces. In all site traces, the error margins are less than
11% with between 1 and 3. We also measure the first three
statistical moments of the LATP flight distributions obtained by
performing LATP on top of waypoints extracted from real traces
and measure their difference from those of the flight distribu-
tions obtained from the real traces. Fig. 13 plots the error per-
centiles for all the traces in which almost all the moments get
the minimums around 1.5 and 3, respectively, with around 10%
or less errors.

For Disney World and State Fair, is close to 3 (so assigning
a higher weight to distance), while the other traces have
between 1 and 2. Within a theme park, the objectives of the
participants are likely to visit as many attractions as possible
within a given time, so the traveling distance plays a bigger
role. On the campus scenarios, people may have unexpected
urgent events (e.g., appointments) that force them to make trips
regardless of their traveling distances. The result indicates that
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Fig. 12. Results of LATP using waypoints from (a) New York City and (b) Disney World traces. The algorithm is performed on each individual trace for various
�-values.

Fig. 13. Errors (%) of LATP in terms of the first three moments. (a) New York
City. (b) State Fair. (c) Campus I. (d) Campus II. (e) Disney World.

LATP can recover almost identical flight distributions as the
real ones from the traces and thus confirms that people use
distance as an important factor in deciding the next destination
of their trips. In Section IV, we show by simulation that when
combined with self-similar points as found in the traces, LATP
can generate traces with heavy-tail flights.

IV. SLAW: SELF-SIMILAR LEAST-ACTION WALK

A. SLAW Overview

Capturing both power-law flights and self-similar waypoints
in walk traces is nontrivial because of mutual dependency
among various parameters such as the degree of self-similarity
(Hurst parameter) and the characteristics of flight distribu-
tions, e.g., the power-law slope of the distribution. SLAW
adopts the following approach to the problem. It first generates
self-similar waypoints using a technique similar to a fractional
Gaussian noise or Brownian motion generation technique (fGn
or fBm) (e.g., [44] and [45]) over a 2-D plane. Our analysis in
Section III-C recovers algebraic relations between the Hurst
parameter of self-similar points and the power-law slope of
the corresponding gap distributions. This indicates that by
controlling the Hurst parameter value, we can easily control the
characteristics of gap distributions.

Gonzales et al. [2] report that people tend to make daily mo-
bility within their own bounded areas. To emulate this behavior,
SLAW develops an individual walker model restricting the mo-
bility of each walker to a predefined subsection of the total area.
It is done by selecting a subset of self-similar waypoint clusters
and restricting the movement of each walker to its own desig-
nated set of clusters. Since people do not always maintain fixed
routines, in order to add randomness, SLAW emulates this spon-
taneity in daily mobility by allowing walkers to choose one of
the other clusters randomly for each day. From these selected
clusters of waypoints, each walker chooses a set of waypoints
for each daily trip and then applies LATP to select the order of
visits over the selected waypoints. The initial point of the daily
trips can be arbitrary.

We verify that this walker model combined with LATP and
self-similar waypoints generates heavy-tail flights observed
from real traces, and furthermore, the collection of individual
traces generates power-law ICTs observed in [4].

B. Individual Walker Model

For a given input area , our self-similar waypoint generation
generates a set of the waypoints. We propose an individual
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walker model that selects a subset of and specifies the order
in which those selected waypoints are visited. When selecting
these waypoints, we need to be careful. Self-similar waypoints
have a tendency of creating bursty clusters of various sizes dis-
persed over . If waypoints are uniformly selected from , then
it is most likely that all walkers will traverse through most clus-
ters and do not have heterogeneously bounded areas of mobility
[2]. To define the heterogeneously bounded areas of mobility,
we heuristically define an individual walker model that assigns
different walkabout areas to different walkers and restricts each
walker to move only around its designated area.

We first build clusters of waypoints by transitively connecting
waypoints within a radius of 100 m. The radius represents a typ-
ical distance among buildings belonging to the same department
in a campus. The clustering radius can be varied to study dif-
ferent scales of clusters (e.g., cities in a nationwide trace). Let

be the cluster set, be the number
of waypoints, and be the total number of waypoints in . We
assign a weight to each cluster .

According to our GPS traces, each participant in Campus I,
Campus II, New York City, Disney World, and State Fair visited
4.55, 3.66, 6.13, 3.34, and 1.67 clusters per day on overage. The
overall average number of clusters visited per day by each par-
ticipant is 4.42. A participant in each trace also visited 121.6,
125.2, 102.8, 36.7, and 30.7 waypoints per day, respectively.
The daily traces have duration of 12 h on average. A daily trace
of 12 h worth includes approximately 120–150 waypoints on av-
erage. SLAW reflects these tendencies as follows. Each walker
chooses three to five clusters randomly from with probability
linearly proportional to the weights assigned to clusters. Let
be the set of the selected clusters. From , each walker chooses
about 120–150 waypoints randomly per day. The speed at which
a walker moves from one waypoint to the next waypoint is deter-
mined by a speed model discussed in [1]. Two different walkers
are allowed to have overlapped waypoints. Let be the set of
waypoints that a walker has selected from . It also picks a
starting waypoint (e.g., home) from from which it always
starts its daily trip.

To add some randomness in his daily travel, a walker re-
places one of the clusters in as follows. For each daily trip,
it first chooses one new cluster randomly (ignoring weights)
not in and selects waypoints randomly from (about
5%–10% of all waypoints in ). Then, it randomly selects a
cluster and finds all waypoints associ-
ated with that cluster. At the beginning of each day, walker
starts from its starting point and, throughout the day, makes a
one-round trip visiting all waypoints in using
LATP. It uses a truncated power-law pause-time distribution ob-
served in our traces [1] to decide the amount of time to stay at
each waypoint. At the end of the day, it comes back to its starting
point. The number of chosen clusters and waypoints to visit and
the 3 mean of the pause-time distribution are adjusted so that
the whole trip will end within a period of 12 h.

Since each walker always makes daily trips over a fixed
set of , its area of mobility is bounded. Also, since walkers
pick their sets of mobility randomly, they tend to have different
areas of mobility. In addition, walkers are allowed to deviate
from these waypoints by picking new waypoints additionally

from the other clusters not in . This allows walkers without
any overlapping clusters to occasionally meet, thus having some
long ICTs. Those with overlapping clusters may have regular
periodic contacts, depending on the transmission ranges or the
time they arrive to the clusters.

We apply the cluster weights when selecting to build some
sense of community among all walkers. This is a heuristic based
on the intuition that bigger clusters are more likely to be vis-
ited. The probability to choose a cluster for visit in a day is
determined by the size of the weight. Because of self-similar
waypoints, some clusters are very large, so many walkers are
likely to visit them. These clusters are emulating the common
popular gathering places for all participants such as a student
union, dormitory, shopping center, street malls, or classrooms.
In Section V, we verify that SLAW with this individual walker
model produces power-law ICTs [4] and the heavy-tail flights
observed from our traces.

V. PERFORMANCE EVALUATION

A. Simulation Setup

For validation, we run mobility simulations using various mo-
bility models. We fix the simulation areas to be approximately
the same as the measurement sites in [46]. The transmission
range of each node is varied from 25 to 150 m. If not explic-
itly stated, it is set to 50 m. Fifty nodes are simulated for 200 h,
and the first 50 h of simulation results are discarded to avoid
transient effects. The speed of every user is set to 1 m/s for sim-
plicity. We use a truncated Pareto distribution as the pause-time
distribution for which the minimum and maximum values are
30 s and 700 min, respectively.

For simulation of various models, we use the following setup.
For the parameters that are common to all models (e.g., the area
of simulation), we use the same value for all models. In case a
model requires use of real trace information (e.g., Darthmouth
requires to use hotspot information and transition probabilities),
we use the ones extracted from our traces. Otherwise, we fix the
values of the input parameters presented in the original papers.
In the original Dartmouth model [5], a 2-D Gaussian distribution
is applied to each pause point, and the hotspots are defined as
regions that are higher than a given threshold after summing up
2-D Gaussian distributions. These hotspot regions are very sim-
ilar with the clusters formed by SLAW. In our evaluations, we
apply our clustering method to the Dartmouth model. It uses the
same waypoints extracted from real traces [46] to build hotspots
and also uses the transition probability obtained from the same
traces. Note that since this model requires using the above in-
formation, the simulation involving the Dartmouth model uses
the same waypoint map that we obtained from the real traces
in [46]. In the CMM model [11], the level of preferential attach-
ment depends on the parameters such as the number of nodes
and the clustering exponent. We set the clustering exponent of
the biggest hotspot to 0.5 following the original paper [11]. In
ORBIT [14], following the size of the simulation area, we vary
the size of one side of hubs from 200 to 500 m while fixing
the number of hubs. Each user selects the same number of hubs
for daily travels as the number of hotspots chosen by individual
walkers in SLAW.
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Fig. 14. Sample walk traces of various models. (a) Real GPS traces (Campus I).
(b) SLAW. (c) Dartmouth. (c) CMM. (d) ORBIT. (e) TLW.

In DTN routing protocol simulations, we generate one mes-
sage bundle between each of randomly selected 100 source-and-
destination pairs. All transmissions are assumed to be reliable
and instantaneous when the communicating nodes are within a
transmission range. To maximize the effect that mobility models
have on routing performance, we assume that all nodes keep the
entire history of past contacts with other nodes. All results are
averaged over 40 runs.

B. Experimental Validation of SLAW

Fig. 14 shows the sample traces of various mobility models
that emulate the mobility in Campus I. It is clearly visible
that SLAW generates traces similar to real GPS traces. Dart-
mouth and SLAW use the same waypoint map extracted from
the Campus-I traces. In the Dartmouth model [5], walkers
visit every cluster with nonzero transition probability. In
ORBIT [14], each user travels a fixed set of clusters (i.e., hubs)
daily in a random order with a uniform probability. TLW [1]
is a random model, so it does not have common clusters for
users. CMM [11] uses one popular cluster using preferential
attachment, but it also makes users visit every place in a given
area.

We now verify how well SLAW models the statistical
features of human mobility. Fig. 15 shows the flight distribu-
tions from various models in the experiments from New York
City traces. SLAW is also performed on the waypoint maps
generated synthetically by our self-similar point generation
technique. For the synthetic waypoint map, it uses the average

-value extracted from the real traces. Surprisingly, for both
synthetic and real waypoint map inputs, SLAW produces very

Fig. 15. Flight-length distributions of synthetic traces from various models.
“Measurement” is the flight distributions from real traces of New York City.

TABLE IV
RESULT OF THE AKAIKE TEST FOR THE MAXIMUM LIKELIHOOD ESTIMATION

OF TRUNCATED PARETO DISTRIBUTIONS (DENOTED Par) AND EXPONENTIAL

DISTRIBUTION (DENOTED Exp) OVER FLIGHTS (DENOTED FL) AND ICTS

EXTRACTED FROM SYNTHETICALLY GENERATED TRACES FROM VARIOUS

MODELS WHOSE PARAMETERS ARE SET BASED ON REAL TRACES

OBTAINED FROM FOUR DIFFERENT LOCATIONS (CAMPUS I, CAMPUS II,
NYC, AND DISNEY WORLD)

TABLE V
RESULT OF KULLBACK–LEIBLER (KL) DIVERGENCE: EACH VALUE

REPRESENTS THE KL DIVERGENCE VALUE BETWEEN THE

FLIGHT-LENGTH DISTRIBUTION FROM THE REAL TRACE

AND SYNTHETIC ONES FROM EACH MODEL SHOWN IN FIG. 14

closely matching flight distributions to and from the GPS
traces. The Akaike test [47] tells whether the generated flight
distributions fit power-law distributions (e.g., Pareto) or expo-
nential distributions. Table IV shows the result of the Akaike
test [47] between Pareto and exponential distributions. In all
cases, the flight distributions generated by SLAW are closer
to a truncated Pareto distribution than an exponential distribu-
tion. We perform the Kullback–Leibler divergence test [48] to
measure the closeness of the flight distributions generated from
various mobility models to the flight distributions from real
traces. The result is reported in Table V, where it shows that
SLAW and TLW in general produce the most closely matching
flight distributions to real ones. Note that TLW does not have
self-similar waypoints, while SLAW does.
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Fig. 16. ICT distributions of synthetic traces from various models running in
the Campus-I environment.

In the same test environments as the above, we run 50 nodes
simultaneously to obtain ICT distributions. It is reported in [4]
that human mobility induces a truncated power-law ICT distri-
bution. Fig. 16 shows the resulting ICT distributions for various
models. Since we do not have any ICT traces corresponding to
our GPS traces, we cannot verify the realism of these ICT distri-
butions. However, we can verify whether the ICT distributions
follow a truncated power-law pattern. Table IV shows the re-
sult of the Akaike test on the ICT distributions. It shows that
the ICTs of SLAW, TLW, and ORBIT fit better to power-law
distributions, while the ICTs of the other models fit better to
exponential distributions. The ICTs of ORBIT shows signifi-
cantly higher occurrences of very long ICTs. This is because, in
ORBIT, the mobile nodes (e.g., humans) with nonoverlapping
orbits do not meet at all, while the others may also meet rarely
because of randomness in picking the waypoints within their
own orbits. The ICTs of CMM and Dartmouth have exponen-
tial distributions in most cases and also tend to have much more
occurrences of long ICTs than SLAW (note that the scales are
logarithmic). This is because they choose the next clusters (or
hotspots) to visit randomly without much periodicity so that the
chances of two nodes meeting again after the first meeting are
much lower.

C. DTN Routing Performance

We test the following five DTN routing protocols: Random
forwarding [21], Direct transmission [21], PRoPHET [22],
Last Encounter Time (LET) [49], and Expected Contact
Time (ECT). Note that all routing protocols are tested with the
mobility traces generated from different mobility models. The
GPS traces from [1] are individual traces that are not recorded
at the same time. Thus, it is infeasible to test routing protocols
over the traces.

In LET, a forwarding node of a message picks, as a next relay,
the node with the most recent history of meeting the destination
of the message among its current neighboring nodes. Each node
updates its neighbor set at every minute. ECT is a new metric
we developed. It computes the expected time that a node meets
the destination by subtracting the last encounter time from the

Fig. 17. Average routing delays of various protocols under CMM.

expected intercontact time, which is computed by averaging the
past intercontact times with the destination.

We can categorize these protocols as stateless and stateful
protocols. Random forwarding and direct transmission are state-
less as they do not use any past meeting history information. The
other protocols are stateful as they all use past contact informa-
tion to predict the future probability of meeting the destination.

We find that the routing performance on TLW, RWP, and
CMM has almost the same patterns, although their average de-
lays are different. For simplicity, we only show the result of
CMM out of them in Fig. 17. In these models, both stateless and
stateful protocols perform almost the same. This pattern hap-
pens because the mobility of nodes in these models is highly
random, so the prediction of stateful protocols is not effective.
The lack of performance differentiation among various types of
protocols limits the usefulness of these models for mobile net-
work simulation.

Dartmouth [Fig. 18(a)] shows results similar to CMM as the
performance of various protocols, except LET is not very distin-
guishable. The pattern can be explained as follows. The proba-
bility that Dartmouth nodes jump to any other hotspots is deter-
mined by the transition probability; so any node can jump to any
other hotspots as long as the transition probability is nonzero.
This causes some randomness in visiting hotspots and, likewise,
ICT patterns similar to those in random mobility models such as
CMM that are manifested in its exponentially distributed ICTs.
However, because of higher transition probability to visit bigger
hotspots, Darmouth exhibits much shorter delays than CMM
and TLW. The low performance of LET in Darthmouth is be-
cause Dartmouth represents a hotspot as a single waypoint (i.e.,
a cluster reduces to one point), which has a side-effect of in-
creasing pause-times at a hotspot (since all the pause-times for a
hotspot are aggregated for all the points inside a hotspot). Thus,
when a forwarding node meets a new node with a shorter LET
than its LET, it is likely that the new node has just arrived to that
hotspot. Thus, the new node is more likely to stay in that hotspot
much longer than the forwarding node, thus causing a longer
delay to meet the destination next time. These features are an
artifact of rather unusual and unrealistic setups of hotspots.

ORBIT [Fig. 18(b)] shows a clear performance differentiation
among different protocols. In ORBIT, nodes in nonoverlapping
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Fig. 18. Average routing delays of various protocols under (a) Dartmouth, (b) ORBIT, and (c) SLAW.

“orbits” (i.e., they do not share a common hotspot) do not meet
at all. The only way to deliver messages between two nonover-
lapping orbits is through the other nodes with overlapping or-
bits with the destination. This means that direct and random
forwarding can perform really poorly. On the other hand, in
ORBIT, stateful protocols can perform much better. The per-
formance difference between ECT and LET are relatively small
compared to the difference between random forwarding and
LET. This is because in ORBIT, the nodes with long LETs are
likely to meet the destination fairly rarely due to only a small
overlap in their orbits. Since each node in ORBIT moves like
RWP among hotspots in its orbit, a small overlap results in a
very long ICT and is thus likely to have long LETs. Thus, the
nodes with shorter LETs are likely to have more overlapping or-
bits with the orbit of the destination. Thus, choosing these nodes
as relays leads to short routing delays. A similar argument is
applicable for ECT because those with long LETs are likely to
have long ECTs in ORBIT.

The mobility patterns of SLAW are quite different from those
of ORBIT. The most salient feature is that SLAW has much
shorter routing delays. SLAW has much more regularity in their
trip patterns than any other models because it uses LATP for
the selected set of waypoints and each node visits almost the
same set of waypoints every day. In this type of scenario, re-
laying to a node with short LETs can be detrimental because
those nodes that just met the destination are likely to have long
ECTs. That means that choosing as relays those nodes with short
ECTs would always result in shorter routing delays because ex-
pected ICTs are very accurate because of the regularity in trip.
The performance of PRoPHET is not as good as ECT because
PRoPHET updates its probability only after meeting a destina-
tion. Thus, its behavior is slightly similar to that of LET. In
SLAW, the power-law ICT distributions play a significant role.
Due to the inspection paradox property of the renewal process
and the power-law ICTs, when a node meets another node, it is
more likely to meet a node with a long ICT. If it is with short
ICTs, then ECT would perform as well as LET. However, with
long (predictable) ICTs, those nodes with short LETs are not
likely to meet the destination for a long time. Thus, ECT can per-
form better than LET. The fact that ECT performs best indicates
that the regularity of trip patterns is well represented in SLAW
without loss of inherent statistical features such as power-law
flight and ICT distributions.

Fig. 19. Average routing delays of various protocols on a real GPS trace [50].

To confirm how much SLAW is realistic in simulating the
performance of routing protocols, a measurement data set that
records mobility patterns of participants in the same region
during the same time period is required. Unfortunately, not
only the GPS data set we used throughout the paper, but also
most of GPS traces publicly available, have only few number of
participants in a region during the same time period. Therefore,
for the verification of SLAW, we use our recently published
GPS traces [50], which had recorded the movement patterns of
97 students in a university campus (Campus II in Section III)
through the same week. This is a unique GPS trace enabling
the routing performance evaluation on realistic human mobility
patterns. Fig. 19 shows the performance of the routing proto-
cols with the same setting used for the evaluation of mobility
models. ECT again performs better than LET or PRoPHET as
it is expected and explained in the evaluation through SLAW.
This well demonstrates the realism of SLAW.

VI. CONCLUSION

In this paper, we present a new mobility model, called
SLAW,2 that captures the statistical features found in real
human mobility traces. We report many pieces of both ana-
lytical and empirical evidence that the movement of people

2SLAW and TLW are implemented in network simulators (e.g., MATLAB,
NS-2, and GlomoSim). The simulation codes are publicly available through
our Web page, http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility-
models-download-tlw-slaw.
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can be expressed very well using spatial gaps among fractal
waypoints and present confirming data for the use of the
least-action principle in human trip planning. Based on this, we
develop a simple heuristic algorithm called LATP that generates
heavy-tail flights on top of fractal waypoints. Combining with
heterogeneously bounded walkabout areas, we can successfully
reproduce many statistical features important to the study of
mobile network performance, especially truncated power-law
ICTs. Our routing performance study indicates that SLAW
effectively expresses mobility patterns arising from people
with some common interests or within a single community like
students in the same university campus or people in theme parks
where people tend to share common gathering places. We find
that LATP over heterogeneously bounded areas realistically
expresses some periodicity in the daily mobility of humans.
This feature makes many stateful routing protocols such as
utility-based routing very effective.

A. Applications of SLAW

Our work is the first in explaining the causes of heavy-tail
flight distributions in human mobility. It shows that humans
move with contexts (e.g., home, work, meeting, gathering, and
favorite places) and explains how these contexts can influence
the way that humans make trips. Thus, the insight that our work
provides is not limited to computer networking. Realistic human
mobility models have applications in many diverse disciplines
outside computer networks including civil engineering for city
and escape planning, disease control for studying virus outbreak
spread, telecommunication for planning cell-phone towers and
understanding handoff patterns, and sociology for studying the
interaction and social network patterns of humans.

B. Future Work

We believe that SLAW is a few steps closer toward repre-
senting realistic synthetic mobility patterns than the existing
work. However, it is clear that SLAW may not necessarily cap-
ture all the important statistical features of human mobility.
There could be many other features that SLAW may not capture.
One of them is temporal features of mobility. People meet be-
cause they are in the same place and also at the same “time,” and
also people move to a certain location at a certain time because
they have to be there at that time. A hotspot may become pop-
ular only at a certain time, e.g., a restaurant area. Real mobility
patterns must be a result of representing these spatial and tem-
poral correlations. In the construction of mobility traces, SLAW
chooses a set of destinations to visit randomly from a given set of
hotspots, and the visits to a certain waypoint are determined by
a function of distance from the current waypoint. While this de-
cision process may capture some realism in spatial constraints,
this does not represent temporal tendencies of human mobility.
We leave this problem as an open problem.

REFERENCES

[1] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the Levy-walk
nature of human mobility,” in Proc. IEEE INFOCOM, Phoenix, AZ,
Apr. 2008, pp. 924–932.

[2] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, pp. 779–782,
Jun. 2008.

[3] D. Brockmann, L. Hufnagel, and T. Geisel, “The scaling laws of human
travel,” Nature, vol. 439, pp. 462–465, Jan. 2006.

[4] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on the design of opportunistic forwarding
algorithms,” in Proc. IEEE INFOCOM, Barcelona, Spain, Apr. 2006,
DOI: 10.1109/INFOCOM.2006.172.

[5] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real
user traces,” in Proc. IEEE INFOCOM, Barcelona, Spain, Apr. 2006,
DOI: 10/1109/INFOCOM.2006.173.

[6] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnović, “Power law and
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