
1

.NET based OSS 
Architecture/Performance Comparison

with EAI/WF engines

Seong Ik Hong, Young Il Kim, Woo Sung Kim

OSS Lab. KT

Taejeon, Korea
Email: {yeolin,yikim,kwsun}@kt.co.kr

Abstract

As network technologies have tremendously evolved and the customer 
demand for telecommunications services has increased so fast, the need for 
OSS to process various service orders and manage a lot of equipments has 
become bigger and bigger. To meet these requirements, OSS must have some 
special characteristics such as time-to-market quick deployment, extensible 
architecture and simple user interface, etc. Most OSS processes are well set-
up series of tasks or actions, the order in which they must be performed, so 
we can use commercial workflow engine to achieve time-to-market OSS 
deployment. 

In this paper, we describe and compare the architecture and framework of 
two .NET EAI/Workflow solution based OSS and test the performance. The 
Microsoft BizTalk server is a EAI/Workflow engine that can be used to 
enforce the OSS workflow definitions. Current version of BizTalk server is 
2002, but the totally renew next version, Jupiter will be published in 2004. 
We will compare the architecture, performance and functionality of OSS 
using Jupiter and BizTalk 2002.

Key words : OSS implementation, EAI/Workflow engine, .NET platform



2

(2)
NOMS 2004

Introduction
• OSS general requirements [1],[2],[3]
• Effects of EAI/Workflow engine 

adaptation to OSS [2]
– Integration of enterprise applications.
– Automation of business process
– Integration of information in enterprise 

environments
– Short delivery cycle of services and 

products

• Characteristics of EAI/Workflow engine
– Messaging or middleware
– Adaptor for interconnection with 

heterogeneous systems
– Data mapping
– Business workflow definition

• .NET based EAI/workflow engines
– BizTalk2002 [7]
– Jupiter [8]

• Methodologies to compare
− Design one core OSS process
− Design technical architecture for the 

process
− Implement and compare performance

Yes (OLAP 
functionality included)

NoStatistics

Very good (compiled to 
DLL, See test results)

Not good (XLANG 
interpreter)

Performance

Possible using 
orchestration debugger

Impossible
Process 
debugging

Multi-level definition 
(using sub-process and 
grouping)

Single level definition
Process 
definition

• All the tools are 
integrated to VS.NET

• 5 inconsistent tools

• No debugging tool

• Error-prone

• Visio based 
orchestration design

Easiness of 
tools

Good (Health and 
activity tracking tool, 
debugger) 

Limited (XLANG 
monitor, document 
tracking)

Process 
monitoring

Multiple versions can 
be run in a server 

Impossible
Version 
control

JupiterBizTalk 2002Requirement

Table.1  Comparison of features

Platforms for OSS have some general requirements as described in [1],[2],[3]. If we use 
EAI/ Workflow, we can meet previous requirement more easily [2]. EAI/Workflow is a 
term used to describe the tasks, procedural steps, organizations or people involved, 
required input and output information, and interconnection with heterogeneous systems. 
There are some effects of EAI/workflow engine adaptations [2].

• Integration of enterprise applications.

• Automation of business process

• Integration of information in enterprise environments

• Short delivery cycle of services and products
The characteristics of general EAI/workflow engines are as follows.

1. Messaging or middleware

2. Adaptor for interconnection with heterogeneous systems

3. Data mapping

4. Business workflow definition
BizTalk Server enables businesses to achieve application integration and workflow 

definition through the special functionalities as follows.

1. Messaging through MSMQ, web service and BizTalk messaging

2. Many adaptors such as for MQseries, SAP and web services 

3. Mapper functionality for data mapping

4. Orchestration design to define business workflow



3

(3)
NOMS 2004

1. Receive 
Service 
Order 

Request

4. Request 
PSTN 
facility 

information

Service Ordering System

No

Yes

IM_Receive 
Service Order

3. Check
validation

Yes

IM_Request Additional 
Service Order 
Information

5. Receive 
PSTN 
facility 

information

IM_Receive 
Additional 
Service Order 
Information

6. If 
sufficient

8. Receive 
Restart 
Order

7. Send 
Exception

Error 
Handling 

Application

IM_Send Error 
Message

IM_Receive Error 
Completion 
Notification

21. Send SO 
Complete

Outside work manager

11. Send 
Provisionin

g Order

4b4b IM_Send 
Provisioning  
Order

13b13b

IM_Receive 
Provision Result

13. Send 
WO

14. Send 
Activation

15. Send 
CO

12. Receive 
Provision 

Result

IM_Send CO 
Work Order 
Request

IM_Send 
Activation 
Request

IM_Send 
Work Order 
Request

16. Receive 
WO Result

IM_Receive 
Work Order 
Result

IM_Receive 
CO Work 
Order Result

IM_Receive 
Activation 

Result

Fork

Fork

Join

Join

17. Receive 
Act. Result

18. Receive 
CO Result

Equipment Activator

14b314b3

15b115b1 15b315b3

14b114b1

14b214b2

15b215b2

11 33

101101
100100

22

2222

IM_Send 
Service Order 
Result

4a4a
IM_Update Service 
Order Login 

9. Register 
Log-in ID

10. Receive 
registration 

result

5a5a

IM_Receive DB 
Transaction Result 

No

19. Send 
Facility 
Update 
Request

20. Receive 
Facility 
Update 
Result

IM_Send 
Facility 
Update 
Request

1616 IM_Receive 
Facility Update 
Result

2121

2. Wait till 
due date

ADSL/PSTN Service Order Scenario

Fig.1  ADSL/PSTN ADD Service Order Scenario

There are a lot of telecommunications services and lots of corresponding ways to manage 
them. But generally OSS business processes can be categorized as five major processes. 
Addition, deletion and modification of services, problem handling and monitoring of 
network devices. Addition is a process of creating a new customer entry in database and 
setting all the required network equipments to provide the requested service. Deletion is a 
process of canceling the service, and modification is a service change. Problem handling 
includes customer data checking, testing the equipment, outside worker dispatch and etc. 
Monitoring is active surveillance process for network resources. Works in those five 
categories are not very different especially in technology viewpoint. So, we choose ‘ADSL 
Addition’ scenario as a sample scenario because it is the most popular process that occurs. 
Addition process includes service order validation, due date waiting, registering customer 
information including login ID, activation of network equipment and order dispatch for 
office and outside workers. It has many aspects to test EAI/workflow functionalities such as 
fork and join of process, common parts which can be extracted as a sub-process, conditional 
branch and interconnections with previously implemented legacy systems such as Equipment 
Activator.

We have already seen the possibilities using a simplified scenario and BizTalk2002 [2], but 
in this paper we will implement almost real scenario using BizTalk2002 and the next version, 
Jupiter. We will compare the two versions in many aspects,too.



4

(4)
NOMS 2004

Technical Architecture using BizTalk2002
• Message Oriented 3 tier Architecture
• Technologies adapted

– ASP.NET web application
• Operators enter the orders via web application

– ADO.NET DLL
• Connect database

– Database/Web services API
• Order, facility and customer information are 

stored in SQL server 2000
• Database APIs for order, facility and customer 

DB access are exposed through web services
– MSMQ

• transfer order data from web server to 
application(biztalk) server through messages

– BizTalk server
• Receive order from MSMQ
• Workflow control SQL server

– PubSub engine
• Is based on web services
• Used for communication among 

orchestrations
– COM+

• BizTalk orchestration calls COM+ 
components to call web service of DB APIs 
and to process business logic Fig.2 Technical Architecture using BizTalk 2002

Web server

BizTalk DB

DB Server 
for BizTalk

BizTalk 2002 server

MSMQ

ASP.NET
Web application

ADO.NET
Order Processing

DLL

MSMQ

BizTalk
Rcv. Function

BizTalk
MessagingPort

BizTalk
Channel/Map

BizTalk
Orchestration

COM+
component

DBServer

ASP.NET
Web Service

BizTalk
Adaptor

Stored
Procedure

Order

Facility

Customer
PubSub
Engine

PubSub DB

Web/App server

Web servers have ASP.NET web applications which enable the operators to enter service 
orders. ASP.NET server controls enable an HTML-like style of declarative programming 
that let us build great ordering pages. Displaying customer data, validating operator input, 
and uploading files are all easy.  Best of all, ASP.NET pages work in all browsers including 
Netscape, Opera, AOL, and Internet Explorer. ADO.NET order processing DLL (Dynamic 
Link Library) connects the order database and save the service order input data.

We could build robust 3-tier applications using MOM(Message Oriented Middleware), 
MSMQ(Microsoft Message Queuing) with .NET platform[1],[2]. MSMQ enables web 
servers to send messages with delivery guarantees that can be applied on a message-by-
message basis. MSMQ will ensure that messages get delivered using disk-based storage 
mechanisms and log-based recovery techniques. MSMQ messages can contain data in any
format that is understood by both the sender and the receiver. The web servers send the 
orders in XML format which becomes a defacto standards for data exchange [4].

Workflows and EAI functions are conducted by BizTalk server. The COM Component 
shape enables us to use preexisting components to perform database interactions within an 
XLANG schedule. Using BizTalk server, we cannot implement sub-process so we developed 
web services based pubsub(publish/subscribe) engine. This is for dynamic calling 
mechanisms among orchestrations. Details on BizTalk will be explained later. 

There are two kinds of databases. One is user data such as order data, facility data and 
customer data. These are exposed using web services. Data are accessible only through these 
APIs. The other is for BizTalk server. BizTalk use its own SQL database for management of 
workflow status.



5

(5)
NOMS 2004

Design using BizTalk2002 (1/2)
• BizTalk Receive Function

– monitor documents posted to specified locations 
(directory, queue or by web site). 

• BizTalk Editor
– enables users to define schema for XML, EDI, and flat 

files.

• BizTalk Mapper
– Build document maps that allow applications and 

business partners who use different document 
definitions 

• BizTalk Messaging Manager
– Use this wizard-based tool to rapidly define trading 

partner relationships. 

• BizTalk Orchestration Designer
– Visually define and build robust, distributed business 

processes. 

• BizTalk Server Administration 
– enables administrators to perform common 

administrative tasks such as adding and removing 
servers.

• BizTalk Document Tracking
– enables users to track documents as they move through 

various stages of the business process. 
Fig.4  BizTalk Messaging Manager

Fig.3  BizTalk Editor

BizTalk Server provides a set of sophisticated graphical tools that businesses can use to 
build, transform, manage, track, and analyze business documents. The BizTalk Server tools 
were designed to simplify the common tasks required to integrate applications and business 
systems, and ensure the desired functionality is achieved.

BizTalk Server includes the following graphical tools:

•BizTalk Orchestration Designer enables users to visually define and build robust, distributed 
business processes. 

•BizTalk Editor enables users to define schema for XML, EDI, and flat files. 

•BizTalk Mapper enables users to link disparate schemas and define steps for successful 
document transformations. 

•BizTalk Messaging Manager is a wizard-based tool that enables users to manage the details 
of business-process transactions. 

•BizTalk Server Administration enables administrators to perform common administrative 
tasks such as adding and removing servers. 

•BizTalk Document Tracking enables users to track documents as they move through various 
stages of the business process. 



6

(6)
NOMS 2004

Design using BizTalk2002 (2/2)
• Orchestration Designer

– Visio 2002 based tool

– No debugger

– Not designed for complex workflow

• ADSL/PSTN Service order characteristics
– Action : 28

– Total Orchestration: 5 (main: 1, subsystem: 4)
• Sub-orchestration cannot be defined in BizTalk 2002. Subsystem 

orchestrations are implemented as independent ones and called via 
web-service based Pub/Sub engine, BizTalk Messaging and 
MSMQ

– DB access : 3

– Decision : 1

– Fork : 2

– join : 2

– Non-realtime work call : 3 (Provisioning, Central office work, 
Outside work) orchestration dehydration occurs.

• If dehydration does not occur, there would be too many running 
instances. Too many running instance make the system stop.

Fig.5  Main orchestration

Fig.6  Sub orchestration

Orchestration Designer is a Visio 2002 based tool which includes no debugger. It is not 
designed for complex workflow design[2], so it has some defects as a workflow engine for 
OSS implementation. 

The characteristics of the orchestration for ADSL/PSTN service orders are as follows:

•Action : 28

•Total Orchestration: 5 (main: 1, subsystem: 4)

•Sub-orchestration cannot be defined in BizTalk 2002. Subsystem orchestrations are 
implemented as independent ones and called via web-service based Pub/Sub engine, BizTalk 
Messaging and MSMQ

•DB access : 3

•Decision : 1

•Fork : 2

•join : 2

•Non-realtime work call : 3 (Provisioning, Central office work, Outside work) orchestration 
dehydration occurs. If dehydration does not occur, there would be too many running 
instances. Too many running instance make the system stop.



7

(7)
NOMS 2004

Technical Architecture using Jupiter
• Message Oriented 3 tier Architecture

– Simpler than in BizTalk 2002
• Technologies adapted

– ASP.NET web application
• Operators enter the orders via web application

– COM+ component
• Business logic is implemented such as order 

processing, facility selection, etc.
• BizTalk orchestration calls COM+ components 

to process business logic
– Database/Web services API

• Order, facility and customer information are 
stored in SQL server 2000

• Database APIs of order, facility and customer 
DB are exposed via web services

– MSMQ/T
• same as MSMQ from a network perspective 
• instead of sending messages to a queue, you 

send them to a receive location. 
• the receive locations and send ports are 

accessible in the Administration Console and 
BizTalk Explorer.

– Jupiter server
• All the components of business process such as 

Receive Location, Map, Pipeline are integrated 
in orchestration Fig.7  Technical Architecture using Jupiter

Web/App server

Message Box
For Jupiter

DB Server 
for Jupiter

Jupiter server

MSMQ/T

ASP.NET
Web application

MSMQ/T

Jupiter
Orchestration

(Map, Receive,
Messaging)

DB Server

ASP.NET
Web Service Stored

Procedure

Order

Facility

Customer

DLL / COM+
component

We implemented message oriented 3 tier OSS architecture as in with BizTalk 2002. Almost 
all the portions except that BizTalk server has changed to Jupiter are same, and many 
separate functions such as map, ports are integrated to orchestrations. 

ASP.NET web application are same as in BizTalk 2002. Business logics such as order 
processing, facility selection, etc are implemented with COM+ components. BizTalk 2002 
uses COM+ directly to communicate with business logics outside the BizTalk. But Jupiter 
can use many ways such as web service to call other business logics, so COM+ components 
are placed in Web/Application server as Microsoft recommended for their general 3 tier 
architecture. It is natural because web components are generally tightly coupled with 
business logic components.

Databases are totally accessible through web service API. Web service is a good technology 
for database API because it can be easily accessed regardless of the platform of the clients 
and in many cased transactions with databases are completed in a minute. 

MSMQ/T is same as MSMQ from a network perspective but a little different at some points 
that instead of sending messages to a queue, you send them to a receive location. The receive 
locations and send ports are accessible in the Administration Console and BizTalk Explorer.

Jupiter server will be explained in detail at the next two pages.



8

(8)
NOMS 2004

Design using Jupiter (1/2)

Fig.5 Design using VS.NET

Fig.9  Message Design (Editor)

Fig.8  Orchestration Designer

• All development tools are integrated in Visual 
Studio .NET

– Receive Location (former BizTalk Receive Function)
• Receive messages 
• Added by BizTalk Explorer

– Editor (Improved )
• enables users to define schema for XML, EDI, and flat files.

– Mapper (Improved )
• Build document maps that allow applications and business 

partners who use different document definitions 

– Pipeline Designer (former BizTalk Messaging Manager)
• is a graphical tool that makes a pipeline which is a series of 

COM or .NET components that send or receive messages.

– Orchestration Designer (Improved)
• Visually define and build robust, distributed business 

processes. 

– Explorer (former BizTalk Server Administration )
• enables users to view the different modules in the 

Configuration database and the associated resources.

– Orchestration Debugger (new)
• allows you to see the progress of an Orchestration instance 

on a shape-by-shape basis 

– Tracking Profile Editor (new)
• used to define the interesting parts of their business process 

as well as interesting business payload data.

All development tools are integrated in Visual Studio .NET. Receive location, former 
BizTalk Receive Function, is the physical, design-time notion of a location (such as a URL) 
and a protocol type. 

•A receive location in the Host node in the BizTalk Server Administration console, defines 
the receive functionality. 

•Editor is a visual tool that simplifies the process of creating structured schemas, specified in 
XSD, for both XML and non-XML formats. 

•Mapper is a graphical user-interface tool that simplifies the process of specifying an XML 
message transformation, based on two schemas created with the Schema Editor, producing 
an XSLT stylesheet as compiled output to be used by the server transformation run-time.

•Pipeline Designer, former BizTalk Messaging Manager, is a graphical tool that makes a 
pipeline which is a series of COM or .NET components that send or receive messages.

•Orchestration Designer visually define and build robust, distributed business processes. 

•Explorer, former BizTalk Server Administration, enables users to view the different 
modules in the Configuration database and the associated resources.

•Orchestration Debugger allows you to see the progress of an Orchestration instance on a 
shape-by-shape basis 

•Tracking Profile Editor used to define the interesting parts of their business process as well 
as interesting business payload data.



9

(9)
NOMS 2004

Design using Jupiter (2/2)

Fig.10  Main Orchestration

Fig.11  Sub Orchestration

• Workflow engine functionality improved
– Business Activity Monitoring
– Real-time Tracking
– Human-based Workflow
– Business Process Execution Language based
– Business Rules
– Sub-orchestration design
– Expand/Collapse Group assignment
– Technical part/business part separation
– Debugging

• ADSL/PSTN Service Order
– Action : 30
– Orchestration: 5 (Main: 1, Sub: 3, Common: 1)
– DB access : 3
– Decision : 2
– Fork : 2
– Join : 2
– Non-realtime work call : 3 (Provisioning, Central 

office work, Outside work) orchestration 
dehydration occurs.

New features in BizTalk 2004 Orchestration design are as follows:

•Business Activity Monitoring: Give information workers a real-time view of running 
business processes with the Microsoft Office tools

•Real-time Tracking: Follow the real-time progress of documents and processes in your 
BizTalk Server applications. 

•Human-based Workflow: Integrate people and processes with a single orchestration engine. 

•Business Process Execution Language (BPEL) : Simplify cross-platform interoperability for 
process orchestration with standards developed in conjunction with other industry leaders.

•Business Rules : Dynamically change business processes to maximize organizational 
flexibility. 

•Sub-orchestration design, Expand/Collapse Group assignment, Technical and business part 
separation, Debugging

Four newly added functionalities are especially valuable in implementing process. First, 
sub-orchestration can be designed in one project. In BizTalk 2002 there can be just one 
orchestration diagram in one Visio file. So when we extract common orchestration, we 
cannot reuse it. We have to draw it again and again. Second, expand/collapse functionalities 
are added. This makes our complex diagrams more visible, recognizable and easy to draw. 
Third, technical design and business logic design are separated. In BizTalk 2002, workflow 
designer must have some knowledge about COM+ components, BizTalk messaging and 
script components, etc. This separation liberate the OSS business process designer from 
technical pressure. The last thing is with Jupiter server step-by-step bebugging becomes 
possible. We can find our mistakes or typos very easily with debugger.

The implementation summary to process ADSL/PSTN sample service order are shown 
above. The logical characteristics are about the same as in using BizTalk 2002.  But the 
diagrams shown are very different.



10

(10)
NOMS 2004

Test Results (1/2)
• Test Environment for BizTalk 2002

– OS : Windows 2003 Beta RC2

– EAI/WF server : 2-CPU (PIV 2.4GHz), 2GB RAM, BizTalk 2002

– DB server: 4-CPU (P-IV 1.6 GHz), 4GB RAM, SQL server 2000 Enterprise edition

– Web server: 2-CPU (PIV 2.4GHz), 2GB RAM , IIS 6.0

– IDE: VS.NET 2003 Beta

– BizTalk environment
• Object pooling : maximum 25 XLANG schedule instances can be run to avoid malfunctioning

• Work queue (real input stress) : 0 ~ 5 order to avoid process hanging

• Test environment for Jupiter
– EAI/WF server : 2-CPU (PIV 2.4GHz), 2GB RAM, Jupiter server (alpha version)

– Others : same with for BizTalk 2002

– Jupiter environment
• Multi Host Process : 4 In-Proc process and 3 isolated process to maximize CPU utilization 

• Each orchestrations are executed with their own processes

• Orders generated
– ADSL/PSTN XML Add instance (3196 byte)

Test Environment for BizTalk 2002 are as follows:

•OS : Windows 2003 Beta RC2

•EAI/WF server : 2-CPU (PIV 2.4GHz), 2GB RAM, BizTalk 2002

•DB server: 4-CPU (P-IV 1.6 GHz), 4GB RAM, SQL server 2000 Enterprise edition

•Web server: 2-CPU (PIV 2.4GHz), 2GB RAM , IIS 6.0

•IDE: VS.NET 2003 Beta

•In BizTalk 2002 environment, Object pooling must be used to limit maximum 25 XLANG 
schedule instances can be run to avoid malfunctioning. If the number of running instances 
exceeds reasonable number, the system will fall into a coma status. And work queue length, 
which means real input stress are maintained 0 ~ 5 order to avoid process hanging. Microsoft 
suggests about 20, but 0 ~ 5 is better in our H/W configurations.

Test environment for Jupiter are the same as above

•EAI/WF server : 2-CPU (PIV 2.4GHz), 2GB RAM, Jupiter server (alpha version)

•Others : same with for BizTalk 2002

•In Jupiter environment, multi host process (4 In-Process process and 3 isolated process to 
maximize CPU utilization ) are used, so each orchestrations are executed with their own 
processes 

Orders generated are

•A series of ADSL/PSTN XML Add instance (3196 byte)



11

(11)
NOMS 2004

Test Results (2/2)
• Throughput

– 18.5 times better in Jupiter server

– BizTalk 2002 is slower because it is based on 
XLANG interpreter

– Very high orchestration dehydration costs for non-
realtime functions 

• Performance degraded by 26.88 times in BizTalk 2002 
by dehydration

• In Jupiter, dehydration automatically occurs (cannot be 
controlled)

• Processing time
– 2.94 to 8 times better in Jupiter server

– BizTalk 2002 is slower because it is based on 
XLANG interpreter

• Number of average running instances
– are almost same

– Not an important factor
0.34 ~ 1 minutes1 ~ 8 minutesProcessing Time

18 instances20 instances
Average running 
instances

55.5 orders/min.3 orders/min.Throughput

JupiterBizTalk 2002Measure

Table.2  Performance comparison

Fig.12  CPU utilization of Jupiter server

Fig.13  Average instances of Jupiter server

Performance test is very important because that is a main feature to choose a platform or tool. 
Especially EAI/Workflow engine is a core component of OSS implementation. The results 
for throughput are shown in Table 2 and as follows:

•18.5 times better in Jupiter server

•BizTalk 2002 is much slower because it is based on XLANG interpreter

•Very high orchestration dehydration costs for non-realtime functions : Performance 
degraded by 26.88 times in BizTalk 2002 by dehydration. In Jupiter, dehydration 
automatically occurs (cannot be controlled), but it does not degrade performance very much.

The results for processing time are as follows:

•2.94 to 8 times better in Jupiter server

•BizTalk 2002 is slower because it is based on XLANG interpreter

•Number of average running instances are almost same



12

(12)
NOMS 2004

Conclusion & Future Work
• Functionalities and performance of using Jupiter servers are better

– Development tools are integrated to Visual Studio .NET

– Business process design functionalities are improved

– Process debugging function is added

– Performance is highly improved

– Statistics data produced through OLAP

• Future works
– Test various characteristics of Jupiter

– Web-service compatibility test
• Interconnection with heterogeneous systems (Unix based legacy) will be done via web 

service

• Compatibility check with CORBA, TP-monitor web service

– High load test

– Testing the migration tool from BizTalk 2002 to Jupiter

Conclusion and Future work

In this paper, we have presented the functionalities and performance of BizTalk 2002 and Jupiter covering 
EAI/workflow based OSS implementations. We also presented the the architecture using these two 
engines. We have argued that the Jupiter based approach is superior to BizTalk 2002 in many aspects. 
Jupiter is functionally richer, since it provides easier and well integrated development tools such as 
orchestration designer and process debugger. We have also presented the performance test results using 
implementations with both engines.

In further works, we will test various characteristics of Jupiter, web-service compatibility with 
heterogeneous systems (Unix based legacy), CORBA and TP-monitor based web service. We will also 
test in highly loaded environment.

References

1. Jae-Oh Lee, "Enabling Network Management Using Java Technologies", IEEE Communications 
Magazine, Jan. 2000.

2. Seong Ik Hong, Young Il Kim, Woo Sung Kim, “3 tier OSS architecture with .NET platform”, 
APNOMS 2003, Oct. 2003.

3. J.G.Brinsfield, “Unified Network Management Architecture (UNMA)”, ICC 1988.

4. John-Luc Bakker and Ravi Jain, “Next Generation Service Creation Using XML Scripting Languages”, 
pp.2001 – 2007, ICC 2002.

5. “OSS Java Community Process Program”, http://jcp.org/jsr/tech/oss.jsp

6. “OSS Working Group”, http://www.microsoft.com/SERVICEPROVIDERS/ossbss/osswg.asp

7. “BizTalk 2002 overview”, http://www.microsoft.com/biztalk

8. “New features in Jupiter”, http://www.microsoft.com/biztalk/beta

9. “The Essential Client/Server Survival Guide”, 2nd edition, Robert Orfali, Dan Harkey, Jeri Edwards, 
Wiley


