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ABSTRACT
Motivation: DNA microarrays are now capable of pro-
viding genome-wide patterns of gene expression across
many different conditions. The first level of analysis of
these patterns requires determining whether observed
differences in expression are significant or not. Current
methods are unsatisfactory due to the lack of a systematic
framework that can accommodate noise, variability, and
low replication often typical of microarray data.
Results: We develop a Bayesian probabilistic framework
for microarray data analysis. At the simplest level, we
model log-expression values by independent normal
distributions, parameterized by corresponding means and
variances with hierarchical prior distributions. We derive
point estimates for both parameters and hyperparameters,
and regularized expressions for the variance of each gene
by combining the empirical variance with a local back-
ground variance associated with neighboring genes. An
additional hyperparameter, inversely related to the number
of empirical observations, determines the strength of the
background variance. Simulations show that these point
estimates, combined with a t-test, provide a systematic
inference approach that compares favorably with simple
t-test or fold methods, and partly compensate for the lack
of replication.
Availability: The approach is implemented in software
called Cyber-T accessible through a Web interface at www.
genomics.uci.edu/software.html. The code is available as
Open Source and is written in the freely available statistical
language R.
Contact: pfbaldi@ics.uci.edu; tdlong@uci.edu
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1 INTRODUCTION
DNA gene expression microarrays allow biologists to
study genome-wide patterns of gene expression (DeRisi
et al., 1997; Eisen et al., 1998; Holstege et al., 1998). In
these arrays, total RNA is reverse-transcribed to create
either radioactive- or fluorescent-labeled cDNA which is
hybridized with a large DNA library of gene fragments
attached to a glass or membrane support. Phosphorimag-
ing or other imaging techniques are used to produce
expression measurements for thousands of genes under
various experimental conditions. Use of these arrays
is rapidly creating terabytes of information, potentially
capable of providing fundamental insights into biological
processes ranging from gene function, to development, to
cancer (Spellman et al., 1998; Alon et al., 1999; Golub
et al., 1999; Lee et al., 1999; White et al., 1999; Ly et
al., 2000). Unfortunately, data analysis techniques for
microarray data are still at an early stage of development
(Zhang, 1999). Our goal here is to develop a general
Bayesian statistical framework for the analysis of array
data.

Gene expression array data can be analyzed on at least
three levels of increasing complexity. First, the level
of single genes, where one seeks to establish whether
each gene in isolation behaves differently in a control
versus a treatment situation. The second level considers
gene combinations, where clusters of genes are analyzed
in terms of common functionalities, interactions, co-
regulation, and so forth. The third level attempts to
infer the underlying regulatory regions and gene/protein
networks that ultimately are responsible for the patterns
observed. This paper focuses on the first level of analysis.

For simplicity, we assume that for each gene X we
have a set of measurements xc

1, . . . , xc
nc

and xt
1, . . . , xt

nt
representing expression levels, or rather their logarithms,
in both a control and treatment situation. Treatment is
of course taken in a broad sense to mean any condition
different from the control. For each gene, the fundamental
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question we wish to address is whether the level of
expression is significantly different in the two situations.
While it might seem that standard statistical techniques
could easily address such a problem, this is in fact not the
case.

One approach commonly used in the current literature
is a simple-minded fold approach, in which a gene is
declared to have significantly changed if its average
expression level varies by more than a constant factor,
typically 2, between the treatment and control conditions.
Inspection of gene expression data suggests, however,
that such a simple ‘2-fold rule’ is unlikely to yield
optimal results, since a factor of 2 can have quite different
significance depending on expression levels.

A related approach to the same question is the use of
a t-test, for instance on the logarithm of the expression
levels. This is similar to the fold approach because the
difference between two logarithms is the logarithm of their
ratio. This approach is not necessarily identical to the first
because the logarithm of the mean is not equal to the mean
of the logarithms; in fact it is always strictly greater, by
convexity of the logarithm function. But with a reasonable
degree of approximation, a test of the significance of the
difference between the log expression levels of two genes
is equivalent to a test of whether or not their fold change
is significantly different from 1.

In a t-test, the empirical means mc and mt and variances
s2

c and s2
t are used to compute a normalized distance

between the two populations in the form:

t = (mc − mt )

/√
s2

c

nc
+ s2

t

nt
(1)

where, for each population, m = ∑
i xi/n and s2 =∑

i (xi − m)2/(n − 1) are the well-known estimates for
the mean and standard deviation. It is known that t follows
approximately a Student distribution, with

f = [(s2
c /nc) + (s2

t /nt )]2

(s2
c /nc)2

nc−1 + (s2
t /nt )2

nt −1

(2)

degrees of freedom. When t exceeds a certain threshold
depending on the confidence level selected, the two
populations are considered to be different. Because in
the t-test the distance between the population means is
normalized by the empirical standard deviations, this has
the potential for addressing some of the shortcomings
of the fixed fold-threshold approach. The fundamental
problem with the t-test for microarray data, however, is
that the repetition numbers nc and/or nt are often small
because experiments remain costly or tedious to repeat,
even with current technology. Small populations of size
n = 1, 2 or 3 are still very common and lead, for instance,

to significant underestimates of the variances. Thus a
better framework is needed to address these shortcomings.

Here we develop a Bayesian probabilistic framework
for microarray data, which bears some analogies with the
framework used for sequence data (Baldi and Brunak,
2001) and addresses the problem of detecting gene
differences. Because a complete Bayesian treatment is
computationally demanding, we also develop approximate
computational shortcuts to strike a balance between rigor
and computational efficiency. In particular, we develop
methods for the regularization of the t-test approach.

2 BAYESIAN PROBABILISTIC FRAMEWORK
Several decades of research in sequence analysis and other
areas have demonstrated the advantages and effectiveness
of probabilistic approaches to biological data. Indeed,
DNA microarray data is characterized by a high degree
of measurement noise and variability. Biological systems
also have very high dimensionality: even in a large array
experiment, only a very small subset of relevant variables
is measured, or even under control. The vast majority of
variables remain hidden and must be inferred or integrated
out by probabilistic methods.

The general Bayesian statistical framework codifies how
to proceed with data analysis and inference in a rational
way. Under a small set of common sense axioms, it can be
shown remarkably that subjective degrees of belief must
obey the rules of probability and proper induction must
proceed in a unique way, by propagation of information
through Bayes theorem. In particular, at any given time,
any hypothesis or model M can be assessed by computing
its posterior probability in light of the data according
to Bayes theorem: P(M |D) = P(D|M)P(M)/P(D),
where P(D|M) is the data likelihood and P(M) is the
prior probability capturing any background information
one may have.

Probabilistic modeling of microarray data
In sequence data, the most simple probabilistic model is
that of a die (Figure 1), associated with the average com-
position of the family of DNA, RNA, or protein sequences
under study. The next level of modeling complexity is a
first-order Markov model with one die per position or per
column in a multiple alignment. In spite of their simplic-
ity, these models are routinely used, for instance as back-
ground models against which the performances of more
sophisticated models can be assessed.

In array data, the simplest model would assume that all
data points are independent from each other and extracted
from a single continuous distribution, for instance a Gaus-
sian distribution. While trivial, this Gaussian die model
still requires the computation of interesting quantities,
such as the average level of activity and its standard
deviation, which can be useful to calibrate or assess
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Fig. 1. DNA dice.

global properties of the data. The next equivalent level
of modeling is a set of independent distributions, one for
each dimension, i.e. for instance each gene. While it is
obvious that genes interact with each other in complex
ways and therefore are not independent, the independence
approximation is still useful and underlies any attempt,
probabilistic or other, to determine whether expression
level differences are significant solely on a gene-by-gene
basis.

Here we first assume that the expression-level measure-
ments of a gene in a given situation have a roughly Gaus-
sian distribution. In our experience, with common tech-
nologies this assumption is reasonable, especially for the
logarithm of the expression levels, corresponding to log-
normal raw expression levels. To the best of our knowl-
edge, large-scale replicate experiments have not been car-
ried out yet to make more precise assessments. It is clear,
however, that other distributions, such as gammas or mix-
tures of Gaussians/gammas, could be introduced at this
stage. These would impact the details of the analysis (see
also Wiens, 1999), but not the general Bayesian proba-
bilistic framework.

Thus, in what follows we assume that the data has been
pre-processed—taking logarithms if needed—to the point
where we can model the corresponding measurements of
each gene in each situation (treatment or control) with a
normal distribution N (x; µ, σ 2). For each gene and each
condition, we have a two-parameter model w = (µ, σ 2),
and by focusing on one such model we can omit indices
identifying the gene or the condition. Assuming that the
observations are independent, the likelihood of the data D
is given by:

P(D|µ, σ 2) ≈
n∏

i=1

N (xi ; µ, σ 2)

= C(σ 2)−n/2e− ∑
i (xi −µ)2/2σ 2

= C(σ 2)−n/2e−(n(m−µ)2+(n−1)s2)/2σ 2
. (3)

Here and everywhere else, we write C to denote the nor-

malizing constant of any distribution. All the information
about the sample that is relevant for the likelihood is sum-
marized in the sufficient statistics n, m, and s2. The case
in which either the mean or the variance of the Gaussian
model is supposed to be known is of course easier and is
well studied in the literature (Box and Tiao, 1973; Pratt et
al., 1995).

Priors
A full Bayesian treatment requires introducing a prior
distribution P(µ, σ 2). The choice of a prior is part
of the modeling process, and several alternatives are
possible (Box and Tiao, 1973; Pratt et al., 1995), a sign
of the flexibility of the Bayesian approach rather than
its arbitrariness. Several kinds of priors for the mean
and variance of a normal distribution have been studied
in the literature, including the noninformative improper
prior and the conjugate prior. For microarray data, the
conjugate prior seems to be more suitable and flexible,
not only because of its convenient form, but also because
it incorporates the basic observation that µ and σ 2 are
typically not independent.

The conjugate prior. When both the prior and the pos-
terior have the same functional form, the prior is said to
be a conjugate prior. When estimating the mean alone of
a normal model of known variance, the obvious conjugate
prior is also a normal distribution. In the case of dice mod-
els for biological sequences, the standard conjugate prior
is a Dirichlet distribution (Baldi and Brunak, 2001). The
form of the likelihood in equation (3) shows that the conju-
gate prior density must also have the form P(µ|σ 2)P(σ 2),
where the marginal P(σ 2) is scaled inverse gamma (Ap-
pendix) and the conditional distribution P(µ|σ 2) is nor-
mal. This leads to a hierarchical model with a vector of
four hyperparameters for the prior α = (µ0, λ0, ν0, σ 2

0 )

with the densities:

P(µ|σ 2) = N (µ; µ0, σ
2/λ0) (4)

and
P(σ 2) = I(σ 2; ν0, σ

2
0 ). (5)

The expectation of the prior is finite if and only if ν0 > 2.
The prior P(µ, σ 2) = P(µ, σ 2|α) is given by:

Cσ−1(σ 2)−(ν0/2+1) exp

[
− ν0

2σ 2
σ 2

0 − λ0

2σ 2
(µ0−µ)2

]
. (6)

Notice that it makes perfect sense with array data to
assume a priori that µ and σ 2 are dependent, as suggested
immediately by visual inspection of typical microarray
data sets (Figure 2). The hyperparameters µ0 and σ 2/λ0
can be interpreted as the location and scale of µ, and

511

 by guest on January 1, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


P.Baldi and A.D.Long

the hyperparameters ν0 and σ 2
0 as the degrees of freedom

and scale of σ 2. Applying Bayes theorem and after some
algebra, the posterior has the same functional form as the
prior

P(µ, σ 2|D, α) = N (µ; µn, σ
2/λn)I(σ 2; νn, σ

2
n ) (7)

with

µn = λ0

λ0 + n
µ0 + n

λ0 + n
m (8)

λn = λ0 + n (9)

νn = ν0 + n (10)

νnσ
2
n = ν0σ

2
0 + (n − 1)s2 + λ0n

λ0 + n
(m − µ0)

2. (11)

The parameters of the posterior combine information from
the prior and the data in a sensible way. The mean µn
is a convex weighted average of the prior mean and the
sample mean. The posterior degree of freedom νn is the
prior degree of freedom plus the sample size. The posterior
sum of squares νnσ

2
n is the sum of the prior sum of squares

ν0σ
2
0 , the sample sum of squares (n−1)s2, and the residual

uncertainty provided by the discrepancy between the prior
mean and the sample mean.

While it is possible to use a prior mean µ0 for gene
expression data, in many situations it is sufficient to use
µ0 = m. The posterior sum of squares is then obtained
precisely as if one had ν0 additional observations all
associated with deviation σ 2

0 . While superficially this may
seem like setting the prior after having observed the data
(MacKay, 1992), a similar effect is obtained using a preset
value µ0 with λ0 → 0, i.e. with a very broad standard
deviation so that the prior belief about the location of the
mean is essentially uniform and vanishingly small. The
selection of the hyperparameters for the prior is discussed
in more detail below.

It can readily be shown that the conditional poste-
rior distribution P(µ|σ 2, D, α) of the mean is normal
N (µn, σ

2/λn), the marginal posterior P(µ|D, α) of
the mean is Student t (νn, µn, σ

2
n /λn), and the marginal

posterior P(σ 2|D, α) of the variance is scaled inverse
gamma I(νn, σ

2
n ).

In the literature, semi-conjugate prior distributions are
also used where the functional form of the prior distribu-
tions on µ and σ 2 are the same as in the conjugate case
(normal and scaled inverse gamma, respectively) but inde-
pendent of each other, i.e. P(µ, σ 2) = P(µ)P(σ 2). How-
ever, as previously discussed, this assumption of indepen-
dence is unlikely to be suitable for DNA microarray data.
More complex priors also could be constructed using mix-
tures, a mixture of conjugate priors leading to a mixture of
conjugate posteriors.

3 PARAMETER POINT ESTIMATES
The posterior distribution P(µ, σ 2|D, α) is the fundamen-
tal object of Bayesian analysis and contains the relevant
information about all possible values of µ and σ 2. How-
ever, it can be useful to collapse this information-rich dis-
tribution into single point estimates. This can be done in
a number of ways. In general, the most robust answer is
obtained using the mean of the posterior (MP) estimate.
An alternative is to use the mode of the posterior, or MAP
(maximum a posteriori) estimate. For completeness, we
derive and compare both kinds of estimates for the conju-
gate prior. By integration, the MP estimate is given by

µ = µn and σ 2 = νn

νn − 2
σ 2

n (12)

provided νn > 2. If we take µ0 = m, we then get the
following MP estimate:

µ = m and σ 2 = νnσ
2
n

νn − 2
= ν0σ

2
0 + (n − 1)s2

ν0 + n − 2
(13)

provided ν0 + n > 2. This is the default estimate
implemented in the Cyber-T software described below.
From equation (7), the MAP estimates are:

µ = µn and σ 2 = νnσ
2
n

νn − 1
. (14)

If we use µ0 = m, these reduce to:

µ = m and σ 2 = νnσ
2
n

νn − 1
= ν0σ

2
0 + (n − 1)s2

ν0 + n − 1
.

(15)
The modes of the marginal posterior are given by

µ = µn and σ 2 = νnσ
2
n

νn + 2
. (16)

In practice, equations (13) and (15) give similar results
and can be used with gene expression arrays. The slight
differences between the two closely matches what is seen
with Dirichlet priors on sequence data (Baldi and Brunak,
2001), equation (13) generally being a slightly better
choice. The Dirichlet prior is equivalent to the introduction
of pseudo-counts to avoid setting the probability of any
amino acid or nucleotide to zero. In array data, few
observation points are likely to result in a poor estimate
of the variance. With a single point (n = 1), for instance,
we certainly want to refrain from setting the corresponding
variance to zero; hence the need for regularization, which
is achieved by the conjugate prior. In the MP estimate,
the empirical variance is modulated by ν0 ‘pseudo-
observations’ associated with a background variance σ 2

0 .
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4 FULL BAYESIAN TREATMENT AND
HYPERPARAMETER POINT ESTIMATES

At this stage of modeling, each gene is associated with
two models wc = (µc, σ

2
c ) and wt = (µt , σ

2
t ); two sets

of hyperparameters αc and αt ; and two posterior distribu-
tions P(wc|D, αc) and P(wt |D, αt ). A full probabilistic
treatment would require introducing prior distributions
over the hyperparameters. These could be integrated out
to obtain the true posterior probabilities P(wc|D) and
P(wt |D), which then could be integrated over all values
of wt and wc to determine whether the two models are
different or not. Notice that this approach is significantly
more general than the plain t-test and could in principle
detect interesting changes that are beyond the scope of
the t-test or fold approaches. For instance, a gene with
the same mean but a very different variance between
the control and treatment situations goes undetected by
these methods, although the change in variance might
be biologically relevant. Even if we restrict ourselves to
an analysis of the means µc and µt only, the probability
P(µc ≈ µt |D, αt , αc) must be computed, and would
typically require numerical integration. An alternative is
to directly model the difference as a parameterized Gaus-
sian with corresponding prior and perform a Bayesian
hypothesis test (Baldi and Brunak, 2001). While the latter
can be performed easily on today’s computers, here we
use a simple approximation strategy to the full Bayesian
treatment that relies solely on point estimates.

Point estimates, however, require determining hyperpa-
rameter values, and this can be addressed in a number of
ways (MacKay, 1992, 1999). Here again, one possibility
is to define a prior on the hyperparameters and try to in-
tegrate them out in order to compute the true posterior
P(w|D) and determine the location of its mode, leading
to true MAP estimates of w. More precisely, this requires
integrating P(w|α) and P(w|α|D) with respect to the hy-
perparameter vector α. An alternative that avoids the in-
tegration of the hyperparameters is the evidence frame-
work described in MacKay (1992). In the evidence frame-
work, we compute point estimates of the hyperparameters
by MAP estimation (MP would again require integrating
over hyperparameters) over the posterior

P(α|D) = P(D|α)P(α)

P(D)
. (17)

If we take a uniform prior P(α), then this is equivalent to
maximizing the evidence P(D|α)

P(D|α) = P(D|w, α)P(w|α)/P(w|D, α)

= P(D|w)P(w|α)/P(w|D, α). (18)

In principle, computing the evidence requires integrating
out the parameters w of the model. Using the expression

for the likelihood and the conjugate prior and posterior,
however, we can here obtain the evidence without integra-
tion, directly from equation (18)

P(D|α) = (2π)−n/2

√
λ0√
λn

(ν0/2)ν0/2

(νn/2)νn/2

σ
ν0
0

σ
νn
n

�(νn/2)

�(ν0/2)
. (19)

The partial derivatives and critical points of the evidence
are discussed in the Appendix, where it is shown, for
instance, that the mode is achieved for µ0 = m.

5 IMPLEMENTATION
For efficiency, we have implemented an intermediate
solution in which we use the t-test with the regularized
standard deviation of equation (13) and the number of
degrees of freedom associated with the corresponding
augmented populations of points, which incidentally can
be fractional. This solution has been implemented in a
Web server called Cyber-T accessible at: http://www.128.
200.5.223/CyberT/ (see also Appendix and http://www.
genomics.uci.edu for more details). In Cyber-T, plain and
Bayesian versions of the t-test can be performed on both
the raw data and the log-transformed data.

In the simplest case, where we use µ0 = m, we must
select the values of the background standard deviation σ 2

0 ,
and its strength ν0. The parameter ν0 represents the degree
of confidence in the background variance σ 2

0 versus the
empirical variance. In Cyber-T, the value of ν0 can be set
by the user by clicking on the corresponding button. The
smaller n, the larger ν0 ought to be. A simple rule of thumb
is to assume that K > 2 points are needed to properly
estimate the standard deviation and keep n + ν0 = K .
This allows for a flexible treatment of situations in which
the number n of available data points varies from gene
to gene. In our current implementation, we use a default
of K = 10. A special case can be made for genes with
activity levels close to the minimal detection level of the
technology being used. The measurements for these genes
being particularly unreliable, it may be wise to use a
stronger prior for them with a higher value of ν0 (this
feature is currently not implemented).

For σ0, one could use the standard deviation of the en-
tire set of observations or, depending on the situation, of
particular categories of genes. We favored a flexible imple-
mentation under which the background standard deviation
is estimated by pooling together all the neighboring genes
contained in a window of size w. Cyber-T automatically
ranks the expression levels of all the genes and lets the
user choose this window size using the corresponding but-
ton. The default is w = 101, corresponding to 50 genes
immediately above and below the gene under considera-
tion. Adaptive window sizes are briefly discussed in the
last section, together with the possibility of deriving re-
gression estimates of σ 2

0 .
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Fig. 2. DNA microarray experiment on Escherichia coli. Data obtained from reverse transcribed P33 labeled RNA hybridized to commercially
available nylon arrays (Sigma Genosys) containing each of the 4290 predicted E.coli genes. The sample included a wild-type strain
(control) and an otherwise isogenic strain lacking the gene for the global regulatory gene, IHF (treatment). n = 4 for both control and
experimental situations. The horizontal axis represents the mean µ of the logarithm of the expression levels, and the vertical axis shows the
corresponding standard deviations (std = σ ). The left column corresponds to raw data; the right column to regularized standard deviations
using equation (13). Window size is w = 101 and K = 10 (see main text). Data are from Arfin et al. (2000).

6 SIMULATIONS
We have used the Bayesian approach and Cyber-T to
analyze a number of published and unpublished data
sets. In every high density array experiment we have
analyzed, we have observed a strong scaling of the
expression variance over replicated experiments with the
average expression level (on both a log-transformed and
raw scale). As a result, a threshold for significance
based solely on fold changes is likely to be too liberal
for genes expressed at low levels and too conservative
for highly expressed genes. While several biologically
relevant results are reported elsewhere (Long et al., 2001),
we have found that the Bayesian approach compares
favorably to a simple fold approach or a straight t-test and
partially overcomes deficiencies related to low replication
in a statistically consistent way.

One particularly informative data set for comparing the
Bayesian approach to simple t-test or fold change is the
high density array experiment reported in Arfin et al.
(2000) comparing Escherichia coli cells that were wild

type to cells that were mutant for the global regulatory
protein Integration Host Factor (IHF). The main advantage
of this data set is its four-fold replication for both
wild type and mutant alleles. The regularizing effect
of the Cyber-T prior based on the background standard
deviation is shown for this data in Figure 2 and in the
simulation described below. The figure clearly shows that
standard deviations vary substantially over the range of
expression levels, in this case roughly in a monotonic
decreasing fashion, although other behaviors have also
been observed. Interestingly, in these plots the variance
in log-transformed expression levels is higher for genes
expressed at lower levels rather than at higher ones.
These plots confirm that genes expressed at low or near
background levels may require a stronger value of ν0, or
alternatively could be ignored in expression analyses. The
variance in the measurement of genes expressed at a low
level is large enough that in many cases it will be difficult
to detect significant changes in expression for this class of
loci.
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In analyzing the data we found that large fold changes
in expression were often associated with P-values not
indicative of statistical change in the Bayesian analysis,
and conversely subtle fold changes were often highly
significant as judged by the Bayesian analysis. In these
two situations, the conclusions drawn using the Bayesian
approach appear robust relative to those drawn from fold
change alone, as large non-statistically significant fold
changes were often associated with large measurement
errors, and statistically significant genes showing less than
2-fold changes were often measured very accurately. As a
result of the level of experimental replication seen in Arfin
et al. (2000), we were able to look at the consistency of
the Bayesian estimator relative to the t-test. We found that
in independent samples of size 2 drawn from the IHF data
set (i.e. two experiments versus two controls) the set of
120 most significant genes identified using the Bayesian
approach had approximately 50% of their members in
common, whereas the set of 120 most significant genes
identified using the t-test had only approximately 25% of
their members in common. This suggests that for 2-fold
replication the Bayesian approach is approximately twice
as consistent as a simple t-test at identifying genes as up-
or down-regulated, although with only 2-fold replication
there is a great deal of uncertainty associated with high
density array experiments.

To further assess the Bayesian approach, here we simu-
late an artificial data set assuming Gaussian distribution
of log expressions, with means and variances in ranges
similar to those encountered in the data set of Arfin et
al. (2000), with 1000 replicates for each parameter com-
bination. Selected means for the log data and associated
standard deviations (in brackets) are as follows: −6 (0.1),
−8 (0.2), −10 (0.4), −11 (0.7), −12 (1.0). On this artifi-
cially generated data, we can compare the behavior of a
simple ratio (2-fold and 5-fold) approach, with a simple
t-test, with the Bayesian t-test using the default settings
of Cyber-T. The main results, reported in Table 1, can be
summarized as follows:

• By 5 replications (5 control and 5 treatment) the
Bayesian approach and t-test give similar results.

• When the number of replicates is ‘low’ (2 or 3), the
Bayesian approach performs better than the t-test.

• The false positive rate for the Bayesian and t-test
approach are as expected (0.05 and 0.01 respectively)
except for the Bayesian with very small replication
(i.e. 2) where it appears elevated.

• The false positive rate on the ratios is a function
of expression level and is much higher at lower
expression levels. At low expression levels the false
positive rate on the ratios is unacceptably high.

• For a given level of replication the Bayesian approach
at P < 0.01 detects more differences than a 2-fold
change except for the case of low expression levels
(where the false positive rate from ratios is elevated).

• The Bayesian approach with 2 replicates outperforms
the t-test with 3 replicates (or 2 versus 4 replicates).

• The Bayesian approach has a similar level of perfor-
mance when comparing 3 treatments to 3 controls, or 2
treatments to 4 controls. This suggests an experimental
strategy where the controls are highly replicated and a
number of treatments less highly replicated.

7 DISCUSSION AND EXTENSIONS
We have developed a probabilistic framework for array
data analysis to address a number of current approach
shortcomings related to small sample bias and the fact that
fold differences have different significance at different
expression levels. The framework is a form of hierarchical
Bayesian modeling with Gaussian gene-independent mod-
els. Although the Gaussian representation requires further
testing, other distributions can easily be incorporated in a
similar framework. As a first step, we have implemented
a regularized t-test approach that is only a shortcut with
respect to the full Bayesian treatment. While there can
be no perfect substitute for experimental replication (see
also Lee et al., 2000), we have shown nonetheless that
this approach is effective and indeed has a regularizing
effect on the data. In particular, in controlled experiments,
it compares favorably with a standard fold approach or a
conventional t-test.

Depending on goals and implementation constraints,
the method can be extended in a number of directions. For
instance, regression functions could be computed off-line
to establish the relationship between standard deviation
and expression levels and used to produce background
standard deviations. Another possibility is to use adaptive
window sizes to compute the local background variance,
where the size of the window could depend, for instance,
on the derivative of the regression function. In an expres-
sion range in which the standard deviation is relatively
flat (i.e. between −8 and −4 in Figure 2), the size of
the window is less relevant than in a region where the
standard deviation varies rapidly (i.e. between −12 and
−10 in Figure 2). A more complete Bayesian approach
could also be implemented, for instance integrating
the marginal posterior distributions, which in the case
considered here are Student distributions, to estimate the
probability P(µc ≈ µt |D, αt , αc).

The approach can also be extended to more complex de-
signs and/or designs involving gradients of an experimen-
tal variable and/or time series designs. Examples would
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Table 1. Number of positives detected out of 1000 genes

Log expression Ratio Plain t-test Bayes
n From To 2-fold 5-fold P < 0.05 P < 0.01 P < 0.05 P < 0.01

2 −8 −8 1 0 38 7 73 9
2 −10 −10 13 0 39 11 60 11
2 −12 −12 509 108 65 10 74 16
2 −6 −6.1 0 0 91 20 185 45
2 −8 −8.5 167 0 276 71 730 419
2 −10 −11 680 129 202 47 441 195

3 −8 −8 0 0 42 9 39 4
3 −10 −10 36 0 51 11 39 6
3 −12 −12 406 88 44 5 45 4
3 −6 −6.1 0 0 172 36 224 60
3 −8 −8.5 127 0 640 248 831 587
3 −10 −11 674 62 296 139 550 261

5 −8 −8 0 0 53 13 39 8
5 −10 −10 9 0 35 6 31 3
5 −12 −12 354 36 65 11 54 4
5 −6 −6.1 0 0 300 102 321 109
5 −8 −8.5 70 0 936 708 966 866
5 −10 −11 695 24 688 357 752 441

2v4 −8 −8 0 0 35 4 39 6
2v4 −10 −10 38 0 36 9 40 3
2v4 −12 −12 446 85 46 17 43 5
2v4 −6 −6.1 0 0 126 32 213 56
2v4 −8 −8.5 123 0 475 184 788 509
2v4 −10 −11 635 53 233 60 339 74

Data was generated using normal distribution on a log scale in the range of Arfin et al. (2000), with 1000 replicates for each parameter combination. Means
of the log data and associated standard deviations (in brackets) are as follows: −6 (0.1), −8 (0.2), −10 (0.4), −11 (0.7), −12 (1.0). For each value of n, the
first three experiments correspond to the case of no change and therefore yield false positive rates. Analysis was carried out using Cyber-T with default
settings (w = 101, K = 10) and degrees of freedom n + ν0 − 2.

include a design in which cells are grown in the presence
of different stressors (urea, ammonia, oxygen peroxide),
or when the molarity of a single stressor is varied (0, 5,
10 mM). Generalized linear and nonlinear models can be
used in this context.

The most challenging problem, however, is to extend
the probabilistic framework towards the second level
of analysis, taking into account possible interactions
and correlations amongst genes. If two or more genes
have similar behavior in a given treatment situation,
decisions regarding their expression changes can be made
more robustly at the level of the corresponding cluster.
A number of ad hoc clustering procedures have been
applied to DNA microarray data (Eisen et al., 1998;
Alon et al., 1999; Furey et al., 2000; Heyer et al.,
1999; Tamayo et al., 1999) without any clear emerging
consensus. Of all clustering algorithms, k-means has
probably the cleanest probabilistic interpretation as a form
of EM (expectation–maximization) on the underlying
mixture model. Multivariate normal models and Gaussian
processes could provide the starting probabilistic models

for this level of analysis.
With a multivariate normal model, for instance, µ is a

vector of means and � is a symmetric positive definite
covariance matrix with determinant |�|. The likelihood
has the form

C |�|−n/2 exp

[
− 1

2

n∑
i=1

(Xi − µ)t�−1(Xi − µ)

]
. (20)

The conjugate prior, generalizing the normal-scaled-
inverse-gamma distribution, is based on the inverse
Wishart distribution (Appendix) which generalizes the
scaled inverse gamma distribution and provides a prior on
�. In analogy with the one-dimensional case, the conju-
gate prior is parameterized by (µ0, �0/λ0, ν0, �0). � has
an inverse Wishart distribution with parameters ν0 and
�−1

0 (Appendix). Conditioned on �, µ has a multivariate
normal prior N (µ; µ0, �/λ0). The posterior then has the
same form, a product of a multivariate normal with an
inverse Wishart, parameterized by (µn, �n/λn, νn, �n).
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The parameters satisfy:

µn = λ0

λ0 + n
µ0 + n

λ0 + n
m

λn = λ0 + n

νn = ν0 + n

�n = �0 +
n∑
1

(Xi − m)(Xi − m)t

+ λ0n

λ0 + n
(m − µ0)(m − µ0)

t . (21)

Thus, estimates similar to equation (13) can be derived in
this multidimensional case.

Bayesian methods are being applied increasingly to a
variety of data-rich domains. Whether or not one sub-
scribes to the axioms and practices of Bayesian statistics
(Box and Tiao, 1973; Berger, 1985; Pratt et al., 1995), it is
wise to model biological data in general, and microarray
data in particular, in a probabilistic manner for the reasons
outlined in Section 2. Besides DNA microarrays, there
are several other kinds of biological arrays, at different
stages of development, that could benefit from a similar
probabilistic treatment. By enabling the combinatorial
interaction of a large number of molecules with a large
library, these high-throughput approaches are rapidly gen-
erating terabytes of information, which are overwhelming
conventional methods of biological analysis. Going
directly to a systematic probabilistic framework may
contribute to the acceleration of the discovery process
by avoiding some of the pitfalls observed in the history
of sequence analysis, where it took several decades for
probabilistic models to emerge as the proper framework.
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APPENDIX
Estimating hyperparameters from the evidence
The evidence P(D|α) (equation 19) is continuous and
differentiable with respect to the hyperparameters over
their corresponding valid ranges. Considering convexity
and setting the vector of partial derivatives ∂ P(D|α)∂α

to 0 shows that the maximum of the evidence is achieved
at a point satisfying

µ0 = m (22)

σ 2
0 = s2(n − 1)/n . (23)

Note that the estimate for σ 2
0 leads only to a small

upward revision of the standard deviation estimate in
equation (13). The relation ∂ P(D|α)/∂λ0 can be solved in
closed form. It is easy to see, however, that when µ0 = m,
the derivative is always positive and the critical equation
has no solutions. The evidence is 0 for λ0 = 0 and grows
with λ0 to a computable asymptotic value. In practice, it

is sufficient to ensure that λ0 is large with respect to n,
for instance λ0 = 10n. In terms of priors, a large value
of λ0 in this case corresponds to a very narrow Gaussian
distribution for µ centered on m.

The critical equation for ν0 cannot be solved in closed
form but must be handled numerically. As a function of
ν0, and when µ0 = m, the evidence has the form:

P(D|α) = C
(ν0/2)ν0/2

[(ν0 + n)/2](ν0+n)/2

�((ν0 + n)/2)

�(ν0/2)

σ
ν0
0

[(ν0s2 + (n − 1)s2)/(ν0 + n)](ν0+n)/2
. (24)

As a function of ν0, the asymptotic value of the evidence
P(D|α) with µ0 = m, λ0 = +∞, and σ 2

0 = s2(n − 1)/n
is

(2π)−n/2 (ν0/2)ν0/2

[(ν0 + n)/2](ν0+n)/2

�((ν0 + n)/2)

�(ν0/2)

1

2
s−n.

(25)

The scaled inverse gamma distribution
The scaled inverse gamma distribution I(x; ν, s2) with
ν > 0 degrees of freedom and scale s > 0 is given by:

(ν/2)ν/2

�(ν/2)
sνx−(ν/2+1)e−νs2/(2x) (26)

for x > 0. The expectation is (ν/ν − 2)s2 when ν > 2;
otherwise it is infinite. The mode is always (ν/ν + 2)s2.

The inverse Wishart distribution
The inverse Wishart distribution I(W ; ν, S−1), where ν

represents the degrees of freedom and S is a k × k
symmetric, positive definite scale matrix, is given by

(
2νk/2πk(k−1)/4

k∏
i=1

�

(
ν + 1 − i

2

))−1

|S|ν/2|W |−(ν+k+1)/2 exp

(
−1

2
tr(SW −1)

)
(27)

where W is also positive definite. The expectation of W is
E(W ) = (ν − k − 1)−1S.

The Cyber-T software
Cyber-T is particularly suited to experimental designs in
which replicate control cDNA samples are compared to
replicate experimental cDNA samples. The program cal-
culates basic summary statistics, performs statistical anal-
yses to determine whether observed differences between
the control and experimental values are likely to be real,
and automatically produces a number of useful plots of
the data.
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Cyber-T is designed to accept data in the large data
spreadsheet format, which is generated as output by soft-
ware typically used to analyze array experiment images.
An element may correspond to a single spot on the array
(typical of membrane- or glass slide-based arrays) or a set
of spots (typical of GeneChips; Fodor et al., 1991; Lip-
schutz et al., 1999) designed to query labeled RNA. We
will refer to these elements as genes or gene probes since
each element is generally designed to query a gene. For
each gene, data consists of background-subtracted expres-
sion levels for both experimental and control treatment.
It is assumed that data from independent hybridization
experiments within a given experiment treatment will be
contained in adjacent columns. Each gene will have a
number of ‘labels’ that identify a number of properties
of that gene contained in adjacent columns. Examples of
labels include: gene name, map location of gene, function
of gene, and mRNA length. In order to use Cyber-T, this
data matrix should be saved on the user’s computer as
a tab-delimited text file with column headings removed
or prefixed with the hash character (#). Extra blank lines
at the end of the file should be removed. These data are
uploaded to Cyber-T using the ‘Browse’ button in the
Cyber-T browser window. After uploading the data file,
the user defines the columns on which analysis will be
performed. Missing data should be coded as ‘NA’ and
data that are at or below background should be coded as
‘0’ and treated as the ‘lowest expression level reliably
detected’, which is defined as the 0.0025 percentile
associated with all detected genes. Detailed instructions
for using Cyber-T can be found on the corresponding web
page.

All statistical analysis is carried out using the
hdarray library of functions written in R. R is a
freely available statistical analysis environment (http:
//www.cran.r-project.org) adhering to the Open Source

development model (http://www.ci.tuwien.ac.at/R/).
The hdarray functions are normally invoked through
the Cyber-T Web-based interface, but can also be used
directly and extended or modified through an X-Window
interface (http://www.x.org/about x.htm) to R. A brief
tutorial on how to analyze data directly in R is available at
http://www.genomics.biochem.uci.edu/CyberT/, together
with instructions for installing the Cyber-T interface and
software. This tutorial lists the functions available as
part of the hdarray library and R resources. The library
and the Cyber-T Web interface also include routines for
analyzing paired samples, which would be produced from
two-dye glass-slide microarray experiments (Schena et
al., 1995a,b; Shalon et al., 1996; Heller et al., 1997;
Lashkari et al., 1997). The Web-based interface is written
in Perl (http://www.perl.com) to pass the data and other
information to a series of functions. This combination
of a hard-wired front-end Web interface to a flexible
back end allows users to easily explore their data while
simultaneously providing a framework for growth and
evolution of nonproprietary analysis routines.

Cyber-T generates three output files, two of which
(allgenes.txt and siggenes.txt) can either be viewed in
the browser window or downloaded and imported into
a spreadsheet application for user-specific formatting.
These files return the original data and a number of
additional columns containing summary statistics, in-
cluding the mean and standard deviation of both raw and
log-transformed data, estimates of the standard deviations
employing the Bayesian prior, t-tests incorporating the
Bayesian prior on both the raw and log-transformed data,
P-values associated with t-tests, and ‘signed fold-change’
associated with the experiment. The exact content of
these files is detailed online. Cyber-T also generates
automatically a postscript file CyberT.ps containing a
series of graphs that are useful in visualizing the data.
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