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ABSTRACT
The routing performance of delay tolerant networks (DTN)
is highly correlated with the distribution of inter-contact
times (ICT), the time period between two successive con-
tacts of the same two mobile nodes. As humans are of-
ten carriers of mobile communication devices, studying the
patterns of human mobility is an essential tool to under-
stand the performance of DTN protocols. From measure-
ment studies of human contact behaviors, we find that their
distributions closely resemble a form of power-law distribu-
tions called truncated Pareto. Human walk traces has a
dichotomy distribution pattern of ICT; it has a power-law
tendency up to some time, and decays exponentially after
that time. Truncated Pareto distributions offer a simple yet
cohesive mathematical model to express this dichotomy in
the measured data. Using the residual and relaxation time
theory [17] [4], we apply truncated Pareto distributions to
quantify the performance of opportunistic routing in DTN.
We further show that Truncated Levy walk (TLW) mobility
model [22] commonly used in biology to describe the for-
aging patterns of animals [25], provide the same truncated
power-law ICT distributions as observed from the empiri-
cal data, especially when mobility is confined within a fi-
nite area. This result confirms our recent finding that hu-
man walks contain similar statistical characteristics as Levy
walks [22].
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1. INTRODUCTION
DTN provides a challenging environment in which com-

munications between nodes are intermittent [9]. DTN does
not assume that there exists connectivity between nodes at
a certain point in time. When the nodes are disconnected,
the packets are stored and forwarded through intermittent
contacts established by the mobility of the nodes. In this
type of networks, ICT is a key determinant of routing per-
formance.

Many simulation and theoretical studies of DTN routing
(e.g. [10] [24]) have long assumed that the ICT distribution
(ICTD) of human walks follows an exponential distribution.
Exponential distributions make mobility analysis tractable
and the simulation results with popular mobility models [6]
such as Random WayPoint (RWP) or Random Direction
(RD) models can easily produce exponentially decaying ICT
distributions. But recently, empirical studies [7] show that
this assumption is wrong especially in the context of human
mobility: the ICTD of human walks contains a power law
tendency. Under the assumption that the ICTD has a power
law tail, the DTN routing delays approach infinite because
of the presence of infinitely long inter-contact times.

Recently, [15] shows that for random walks with home
coming tendency, there exists a characteristic time until
which the ICTD has a power law tendency and after which
it decays exponentially. Concurrently, [5] also shows that
mobility within a finite area is also a cause of the exponen-
tial decay of the ICTD for random walks. These finding on
the exponential ICTD tails imply that the delay of oppor-
tunistic routing algorithms should be finite in contrast to
the infinite delay under the power law ICTD assumption.

We do not yet have mathematical models to describe the
dichotomy of ICTD that are easy enough like exponential
distributions for the performance analysis of DTN routing.
To solve this problem, we analyze three empirical data sets
of human ICT. We observe from Maximum Likelihood Es-
timation (MLE) and Akaike test [16] results that the ICTD
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Figure 1: The CDF of user displacements from its
initial position in a fixed travel time. RWP is most
diffusive while BM is least diffusive. The diffusion
rates of TLW are in-between. The values in the
parentheses represent the Levy exponent for flight
length.

closely follows a truncated Pareto distribution. Truncated
Pareto distributions have a truncation point that corresponds
to the characteristic time in the ICTD. We show that the
closed form expression of DTN routing delay can be induced
from the ICTD model.

We further show that TLW provides the same truncated
Pareto ICT distributions as observed from the empirical
data, especially when mobility is confined within a finite
area. This result confirms our recent finding that human
walks contain similar statistical characteristics as Levy walks
[22].

The message delivery ratio is another important aspect of
the routing performance. We first quantify the character-
istic time using the relaxation time of TLW in a confined
region, and show how to predict the delivery ratio using the
characteristic time.

The remainder of this paper is organized as follows. In sec-
tion 2, we introduce mobility models including TLW. Our
experimental results on the ICTD of human walks are pre-
sented in section 3. In section 4, we study the impact of
the truncated Pareto ICTD and the relaxation time on the
actual performance of DTN routing algorithms in detail. In
addition to the single relay case, we generalize our work to
multiple relay cases.

2. TRUNCATED LEVY WALKS
A variety of mobility models have been proposed includ-

ing RWP, RD, Brownian Motion (BM). These models vary
in their movement characteristics. In RWP, a user chooses
a random destination (waypoint) in a simulation area and a
speed from a uniform distribution, respectively. In each way-
point, the user pauses for a certain period of time, and con-
tinue the process. In RD, a user chooses a random direction
in which to travel, then travels to the border of the simula-
tion area in that direction. Once the simulation boundary is
reached, the user pauses for a specified time, and continues
the process.

Recently, the TLW mobility model has been proposed [22].
In TLW, each flight length and pause time follow truncated

Table 1: Notation for Levy distribution
α exponent for flight length
β exponent for pause time
c scale factor
δ skewness parameter
m peak position
1/η truncation point

power laws. During a pause, a walker stays at the location
where the current flight ends. The main difference of TLW
from the others is that we can easily control the level of dif-
fusivity using its power law exponent. It makes TLW a very
useful tool to describe a variety of diffusive natures of human
mobility. Diffusivity plays an important role in determining
the ICTD [22]. Diffusivity can be defined to be the vari-
ance of the displacement between the current position at
time t and a previous position at time t0. Fig.1 shows the
amount of displacement for various mobility models plotted
in Cumulative Distribution Function (CDF) forms. In this
simulation, nodes are moving with same velocity and same
pause time distribution in the same area. So we can consider
that the difference of displacement patterns comes from the
difference of their flight length distribution. The diffusivity
is highly related to the amount of displacement. For exam-
ple, in Fig.1 we can see that RWP is most diffusive while
BM is least diffusive, and TLW is in-between.

To describe the characteristic function of TLW, let’s first
examine a Levy distribution with no truncation. Consider
a mobility model with power law flight length distribution
p(t), and power law pause time distribution ψ(t). Their
asymptotic behavior can be represented as follows [14].

p(t) ∼ |t|−(1+α) (1)

ψ(t) ∼ t−(1+β), where t > 0 (2)

α and β have a value between 0 and 2. The special case
α = 2 (or β = 2) gives a Gaussian distribution for flight
length (or pause time). A characteristic function for a stable
Levy distribution in Eq.(1) is defined as follows [14].

L(z) = exp{−c|z|α[1 + iδsgn(t) tan(
πα

2
)] + imz} (3)

c is a scale factor characterizing the width of the distri-
bution; m gives the peak position; δ is a skewness parame-
ter characterizing the asymmetry of the distribution (δ = 0
gives a symmetric distribution); and sgn(t) is a sign function
of t. In this paper, we consider only symmetric distributions.
Also we assume the maximum at t = 0, leading to m = 0,
then the simplified version of Eq.(3) becomes

Ls(z) = exp{−c|z|α}. (4)

The idea of truncating a Levy distribution at some typical
scale 1/η was mainly born from the analysis of financial
data [23]. Its characteristic function is defined as follows.

T (z) = exp{−c
(η2 + z2)α/2 cos(α arctan |z|

η
)− ηα

cos(πα
2

)
} (5)

When η → 0, Eq.(5) can be rewritten as
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Figure 2: The CCDF of ICT collected from UCSD and Dartmouth. Various known distributions are fitted
to the measured data distribution using MLE.

Ts(z) → exp{−c|z|α} (6)

which has the same form as Eq.(4). Eqs.(4) and (6) imply
that we can consider that TLW has flight length and pause
time distributions that follow Levy distributions as long as
the truncation points are large enough.

Stationarity is another issue for mobility models [3]. It is
known that TLW has its stationary regime and it is uniform
since it has finite pause time and trip durations [22]. TLW
belongs to the random trip class of model in [3] since its
moving trajectory shows the same pattern as Random Walk
on Torus model in wrap around boundary condition and
Billiards in reflecting boundary condition. In this paper, we
assume that all the nodes are in their stationary regime from
the initial state.

3. INTER CONTACT TIMES
In this section, we show that the dichotomy of ICTD can

be modeled by a truncated Pareto distribution and we can
quantify the characteristic time using the relaxation time
theory [2].

3.1 ICTD Fitting
We analyze three empirical data sets of human ICTs.

Those data sets are traces taken in UCSD [19], Dartmouth
University [11] and Infocom 2005 [12]. The UCSD data
records mobility patterns of 275 wireless PDA users within
a campus WiFi network for the duration of 11 weeks. The
Dartmouth data contains thousands of laptop/PDA users
using campus WiFi networks over years. The experiment
in Infocom 2005 has inter-contact information of 41 iMotes
(Bluetooth devices) carried by attendees of the conference
for 3 to 4 days. We pre-process all the data except Dart-
mouth for which we preprocess one-month worth of contact
information.

We apply Maximum Likelihood Estimation (MLE) [16]
to fit to the complementary cumulative density function
(CCDF) of the produced ICTDs from the traces, five well-
known distributions: exponential, power law, gamma, Weibull

and truncated Pareto distributions. The gamma and Weibull
distributions are considered good candidates to describe the
dichotomy patterns. Since they have heavy tail distributions
with exponential decay in the end. The truncated Pareto
distribution also has a power law tendency at the head part
and decays exponentially at the tail. MLE is performed over
the x-axis range between two minutes up to the 99% quan-
tile of each data set. Figs. 2 and 3(a) show the CCDF of
the ICTDs from each data set and the best MLE fittings for
every distribution. Although the MLE itself does not give
quantitative information on the closest matching distribu-
tion, we can observe visually the truncated Pareto distribu-
tion fits the best. (In Fig.2, Weibull fittings are not shown
since MLE for Weibull fails in the optimization process for
UCSD and Dartmouth data.)

To quantify the degree of the best fitting, we perform the
Akaike test [8] [16]. The Akaike test gives an estimate of
the expected, relative distance between the fitted distribu-
tion and the unknown true distribution obtained from the
observed data. In this test, the best fitting distribution is
the one giving the minimum Akaike’s Information Criteria
(AIC) value or Akaike Weight (AW) closest 1. The AIC and
AW values for the three data sets are shown in Tables 2, 3
and 4. They find the truncated Pareto distribution to be the
best fitting distribution. For other data sets that we didn’t
perform MLE and Akaike test, we can easily see that their
ICTDs resemble truncated Pareto distribution (e.g. [7] [18]).

We also find that TLW can easily generate truncated Pareto
ICT distributions. Fig.3(b) shows the simulation results
using TLW. The simulation simulates 600 hours of human
walks of 50 persons generated by TLW in a 3.5 by 3.5 km2

square area with reflecting boundaries. With this boundary,
if a person hits the boundary of the square, he is reflected
at the boundary. The contact information is checked every
1 minute. In the simulation, the initial position of every
person has a uniform distribution which is the stationary
distribution of the model. We discard the first 100 hours of
simulation results to avoid any transient effects. The speed
of every user is set to 1 m/s for simplicity. Transmission
range of mobile devices is set to 250m, which is the typi-
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Figure 3: The CCDF of ICT collected from Infocom 2005 and simulation result by TLW. Various known
distributions are fitted using MLE. TLW recreates the ICTD seen in the empirical data sets.

Table 2: The AIC and AW values for the ICT data
from UCSD.

Distribution AIC AW

Exponential 3,876,400 0
Power law 3,019,400 0
Gamma 3,072,202 0

Truncated Pareto 2,976,700 1
Weibull N/A 0

Table 3: The AIC and AW values for the ICT data
from Dartmouth.

Distribution AIC AW

Exponential 152,730,000 0
Power law 148,270,000 0
Gamma 146,580,000 0

Truncated Pareto 143,170,000 1
Weibull N/A 0

cal value of WiFi. The scale factors of flight lengths and
pause times are set to 10 and 1, respectively. Maximum
flight length and pause time are set to 3 km and 28 hours.
Most of the parameters used in this paper are from [22].
Akaike test shows AW=1 for the truncated Pareto distribu-
tion, which confirms that TLW generates the same ICTD as
observed from empirical data.

3.2 Characteristic Time
It has been shown that the ICTD for the RWP and RD

model has exponential tail [13] [5]. Their proof uses that
the node movements form a renewal process. For example,
in RWP, the longest time duration for two nodes to finish two
jumps can be interpreted as a renewal interval, say ζ. Since
in RWP a node chooses a random destination in a simulation
area so the locations of two nodes at t0 are independent of
their locations at t0 − ζ.

Now consider a similar renewal process for TLW. In the
stationary regime, the locations of each node are indepen-

Table 4: The AIC and AW values for the ICT data
from Infocom 2005.

Distribution AIC AW

Exponential 297,340 0
Power law 262,410 0
Gamma 258,960 0

Truncated Pareto 245,890 1
Weibull 253,800 0

dent of the locations at the initial time. Therefore, the re-
newal interval ζ is the duration for the locations of nodes to
reach the stationary state from the initial state. Since the
stationary state can be defined on a finite area, we can say
that the equilibrium state is reached by the effect of bound-
aries. It means that before ζ has past, the effect of boundary
will not be apparent [21]. From the fact that in infinite area
without a boundary, the ICTD for any random walk model
follows a power law [5], we can conjecture that the power
law ICTD appears before ζ has past. This formulation ex-
plains the dichotomy of the ICTD and it can be applied to
any mobility model that has its stationary regime.

The relaxation time is the time elapsed until that the
initial distribution of node locations reach the equilibrium
state. From the above discussion, we can see that the relax-
ation time corresponds to the characteristic time.

For the mathematical representation of the characteristic
time by TLW, we make some modifications to the approach
to calculate the relaxation time in a confined area shown
in [4]. We estimate the time to reach equilibrium for a 2-D
TLW in a square with the size of L2. A single step radial
distribution of TLW can be approximated by the truncated
version of Eq.(1). By Bachelier’s equation [14](chap 3), the
location after the N th flight is the convolution of each tran-
sition probability. As convolution in the time domain corre-
sponds to the multiplication in the frequency domain, from
Eq.(6) we can get a new characteristic function,

Ts(z)N = exp{−cN |z|α}. (7)



Table 5: Additional notation for Section 3
ζ typical time to reach stationarity
L length of a side for a square area

Nm m-th mode number
δtf average time duration of a single flight
δtp average time duration of a single pause

fmin minimum length of a flight
fmax maximum length of a flight
pmin minimum duration of a pause
pmax maximum duration of a pause

The number of flights, N , can be represented by t/δtf as-
suming zero pause time where δtf denotes the typical time
duration of a single flight. Then the relaxation time is pro-
vided by the Nm-th mode.

kNm =
2π

L
Nm (8)

Insert Eq.(8) into Eq.(7) with N = t/δtf to obtain

Ts(z)N = exp{− t
δtf

c( 2πNm
L

)α

}. (9)

By the definition of relaxation time, after ζ′ in Eq.(10),
the distribution reaches the stationary state.

ζ′ = δtf

c( 2πNm
L

)α
(10)

If we consider non-zero pause time, Eq.(10) becomes

ζ = ζ′+ b ζ′
δtf

cδtp. (11)

δtp denotes the typical time duration of a single pause. δtf

and δtp can be computed from the PDF of truncated Pareto
distributions as shown in Eqs.(12) and (13). fmin and fmax

represent the minimum and maximum flight length and pmin

and pmax represent the minimum and maximum pause time.

δtf =





ln fmax − ln fmin

f−1
min − f−1

max

if α = 1

α

α− 1

f1−α
min − f1−α

max

f−α
min − f−α

max

else

(12)

δtp =





ln pmax − ln pmin

p−1
min − p−1

max

if β = 1

β

β − 1

x1−β
min − x1−β

max

x−β
min − x−β

max

else

(13)

Finally, we need to get the best mode number (Nm) in
Eq.(8) since Eq.(11) with the first mode which is generally
used, gives too rough value. Fig.4 shows that the results us-
ing Nm = 5 are consistent with the corresponding simulation
results. The simulation setup is the same as in Fig.3(b).

Fig.4 shows that the characteristic time is inversely pro-
portional to the diffusivity of the underlying mobility model.
The diffusivity of various mobility models is shown in Fig.1.
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Figure 5: A DTN routing delay according to the
two hop relay algorithm. FCT and RICT can be
considered as the residual times of ICT.

4. ROUTING PERFORMANCE

4.1 Routing Delay
One of the most widely studied routing algorithms in DTN

is two-hop relay routing [10] where a source node sends a
message to the first node it contacts and then that first node
acts as a relay and delivers the message when it contacts the
destination node of the message. Here the period between
the time that the message has originated and the time that
the message is delivered to the relay node is called the first
contact time (FCT) to a relay and the period after that
to the time the message is delivered to the destination is
called the remaining inter-contact time (RICT) between the
relay and destination. In a dense network, FCT is typically
negligible and RICT dominates the message delay.

The relationship between ICT and RICT in two-hop relay
algorithm can be represented by the relationship between
the recurrence time and residual time as shown in Fig.5.
The recurrence time is the time duration between two suc-
cessively recurrent events, and the residual time is the time
until the next event happens from an arbitrary point in time.
Let T and R denote the recurrence and residual time process,
respectively. Then it is known that the following properties



hold [17].

P (R > y) =
E(T )− ∫ y

0
P (T > x)dx

E(T )
(14)

fR(y) =
P (T > y)

E(T )
(15)

In the stationary regime, we can assume enough time has
past so that all the nodes have met each other at least once
before a message transfer starts. Since FCT is negligible in
a dense network, the routing delay of a message is approx-
imately equal to RICT between the relay and destination
nodes. Let X, Y and Z denote ICT, RICT and routing de-
lay, respectively. In case that X follows a truncated Pareto
distribution with coefficient γ between 0 and 2, the CCDF
and expectation of X can be represented as follows [1].

P (X > x) =
xmin(x−γ − x−γ

max)

1− (xmin/xmax)γ

=
(x−γ − x−γ

max)

1− x−γ
max

(16)

Here, xmin and xmax denote the minimum and maximum
ICTs, respectively. For simplicity, we will assume xmin = 1
in this section simplifying the above equations in Eqs.(16)
and (17). Eq.(17) is a simplified form of Eq.(12).

E(X) =





ln xmax

1− x−1
max

, if γ = 1

γ

γ − 1

1− x1−γ
max

1− x−γ
max

, else

(17)

From Eqs.(14), (16) and (17), we get a closed form of
routing delay distributions for the two hop relay protocol
with a single relay as follows.

P (Z > t) ' P (Y > t)

=
E(X)− ∫ t

1
P (X > x)dx

E(X)

=
E(X)− (t−1)(1−γ)−xγ

max(t1−γ−1)

(γ−1)(x
γ
max−1)

E(X)

=
g(γ) + xγ

max(t1−γ − 1)− (t− 1)(1− γ)

g(γ)

= h(γ, xmax)

(18)

g(γ) denotes γ(xγ
max − xmax). Eq.(18) shows that the

routing delay is a function of γ and xmax. From Eq.(15),
we know the PDF of the RICT, so we can get a closed form
expression of the expectation for Z using Eqs.(16) and (17).

E(Z) ' E(Y )

=

∫ xmax

0

y
P (X > y)

E(X)
dy

=
1

E(X)(1− x−γ
max)

[
x2−γ

max − 1

2− γ
− x−γ

max(x2
max − 1)

2
]

(19)
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Numerical evaluation from Eqs.(17) and (19) shows that
the expectation of Z is almost ten times bigger than that of
X. It is consistent with inspection paradox [20] [7] because Y
is dominated by the large samples of X. Note that Eq.(19)
implies that the expectation is always finite in contrast to
the results of infinite delays under the power law ICTD [7].

In a generalized relaying algorithm [7], the source dis-
tributes the message to the first m relays that it contacts.
The routing delay is the time till any copy of the message
is delivered to the destination. In this case Z can be rep-
resented by min(Y1, · · · , Ym) where Yi represents the RICT
by the ith relay. Using simple probabilistic manipulation, we
can see that the CCDF of Z is a multiplication of CCDFs
of Y1 through Ym. Then the closed form of the CCDF of Z
can be shown as below.

P (Z > t) = P (Y1 > t) · · ·P (Ym > t)

= h1(γ, xmax) · · ·hm(γ, xmax)

= h(γ, xmax)m

(20)

hi(γ, xmax) represents the result of Eq.(18) by the ith re-
lay.

Fig. 6 shows the results of above analysis and correspond-
ing simulation. We can see the analysis results are consistent
with the simulation results by TLW. The simulation setups
are the same as used in Fig.4.

So far, we have assumed that FCTs are negligible. We
now consider a case that this assumption is not valid. We
need to compute FCT and add it to RICT to get the exact
delay. FCT can be considered as the minimum RICT from
the source node to the other nodes. Let W represent FCT.
Then W = min(Y1, · · · , YN−1) where N is the total number
of nodes.

P (W > t) = P (Y1 > t) · · ·P (YN−1 > t)

= h1(γ, xmax) · · ·hN−1(γ, xmax)

= h(γ, xmax)N−1

(21)
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We covered the cases that X follows a truncated Pareto
distribution, but this formulation can also be used for any
distribution of X such as exponential distributions with RWP.
To get the closed form of routing delays for RWP, we only
need to replace Eqs.(16) and (17) with the corresponding
values from exponential distributions.

4.2 Message Delivery Ratio
In this section, we study the impact of insufficient dura-

tion of measurement (or simulation) to the delivery ratio of
messages. We already know that the power law ICTD expe-
riences an exponential decay due to the effect of the bound-
aries, home coming tendency or the renewal interval formed
by the stationarity of node locations. But another reason of
the exponential decay is insufficient measurement (or simula-
tion) duration. Since we cannot observe ICT bigger than the
measurement (or simulation) duration, the ICTD look like
decaying exponentially at the tail. In this case, the ICTD
still fits the truncated Pareto distribution since the origi-
nal power law part of the ICTD is truncated by insufficient
measurement duration as shown in Fig.7. Even though the
ICTD is distorted by insufficient time, the routing delay dis-
tribution can be calculated by the same process introduced
in the previous section. But there should be a difference in
the delivery ratio since the measurement (or simulation) is
ended before some messages reach their destinations.

Fig.7 shows an example of insufficient simulation time.
The simulation has the same setup as in Figs.4 and 6. Both
600 hours and 300 hours of TLW make the same ICTDs, but
for other cases the ICTD is truncated earlier and the delivery
ratio is below one. From this figure, we can conclude that if
the observed characteristic time is different from the analysis
result by Eq.(11), the truncation is incurred by insufficient
simulation duration. In this case, we can predict the delivery
ratio is below one.

5. CONCLUSION
In this paper, we study the ICT patterns of human walks

and routing performance in human driven DTNs. From the
empirical ICT data analysis and its applications for routing
performance analysis, we find the followings:

• The ICTD of human walks can be modeled by a trun-
cated Pareto distribution. From this model, we can
induce the closed form expression of the DTN routing
delay distribution. While the existence of dichotomy
in ICTD qualitatively suggest finite routing delays, we
quantitatively show it.

• The TLW mobility model provides the same truncated
Pareto ICTD as observed from the empirical data.

• The TLW mobility model enables us to quantify the
characteristic time of human walks using the relaxation
time theory. It can be used to predict the message
delivery ratio.

We view that our work is an important step for the per-
formance evaluation in human-driven DTN environments.
Though there exist many studies on the patterns of ICTDs of
human walks, they do not suggest quantitative approaches.
Our work also points out that the ICTD patterns observed
from measurement can be generated by TLW. Our work sug-
gests a methodology both of analysis and simulation of hu-
man walks for the evaluation of DTN routing performance.
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