
1

3-tier OSS architecture
with .NET platform

Seong Ik Hong, Young Il Kim, Woo Sung Kim
OSS Lab. KT

Taejeon, Korea
Email: {yeolin,yikim,kwsun}@kt.co.kr

APNOMS 2003

Abstract
As network technologies have tremendously evolved and the customer 

demand for telecommunications services has increased, the need for OSS to 
process various service orders and manage a lot of equipments has become 
bigger and bigger. So, today’s service providers need to provide multiple 
services over a common infrastructure in a cost-competitive environment. 
Microsoft .NET is the Microsoft application development solution, which 
may significantly change how people interact with applications and devices. 
Lots of research centers forecast that .NET and Java platform will dominate 
e-business application development initiatives. In this paper, we will design 
a message oriented 3-tier OSS architecture and implement a simplified 
ADSL provision process using .NET platform and enterprise .NET servers 
to prove the possibilities of .NET based OSS. We will also discuss how 
much .NET platform satisfy the requirements for OSS platforms.



2

(2)APNOMS 2003

Introduction
• OSS general requirements[1]

– Time-to-market, Extensibility, Cool user interface including web-based UI
– Large scale transaction processing/Distributed transaction processing
– Interoperability with other OSS, Low cost

• Recent popular OSS Platforms
– CORBA [2],[3]
– Java [1],[4]
– Microsoft® .NET[5]

• Is a set of Microsoft software technologies for connecting information, people, systems, and devices.
• Will dominate e-business application develop initiatives during the next five years with Java

• Microsoft® .NET to satisfy OSS requirements above
1. IDE, CBD and .NET libraries for rapid development of OSS
2. Highly extensible architecture
3. Windows application/Web application of VS.NET can make UI so cool 
4. COM+,MTS,MSMQ,SQL server and other products can be applied to the applications which 

are large-scale and distributed transactions
5. Web service is going for international standards and other communication tools have many 

bridging product for interconnection

The OSS (Operations Support System) must be able to process lots of service orders and 
manage the networks. There are some general requirements for the OSS platforms. There 
have been so many discussions on how we can implement OSS with .NET platform. So, 
first, we have to check if .NET platform is applicable to OSS or not. Some considerations 
are as follows:
-Time-to-market : For quick implementation, we adopt CBD (Component Based 
Development) methodology and RAD (Rapid Application Development) IDE (Integrated 
Development Environment) VS.NET (Visual Studio .NET). Using VS.NET, software 
modules can be made to components like COM+ . Even web service modules can be 
considered as components. Components can be easily reused for rapid development and 
adaptation.
-Extensibility : Extensible architecture must be adopted in preparation for unexpected 
customer increase and new network services. We can make flexible architectures with .NET 
platform which can be scaled-out and scaled-up. Scale-out is the ability to grow by adding 
instances/computers in parallel to provide acceptable service levels. And scale-up is the 
ability to continue to grow within a single computer.
-Cool user interface including web-based UI (User Interface) can be made with WYSIWYG 
(What You See Is What You Get) method via VS.NET windows and web application. 
-COM+ (Component Object Model Plus), MTS (Microsoft Transaction Server), MSMQ 
(Microsoft Message Queuing), SQL server (database), BizTalk server and others in .NET 
platform support large scale transaction processing/distributed transaction processing.
-Interoperability with other OSS, especially legacy system. Web service is going for 
international standards and other communication tools in .NET platform have many 
bridging products for interconnection.
-Low cost – This fact is really important. But we’ll not mention on the cost problem in this 
paper.

Microsoft® .NET is a set of Microsoft software technologies for connecting information, 
people, systems, and devices. Many market research centers think it will dominate e-
business application develop initiatives during the next five years with Java. In next sections, 
we will see .NET platform in detail and prove the capabilities of .NET with an OSS 
prototype. And then conclude if Microsoft® .NET has enough capabilities to satisfy OSS 
requirements or not. 



3

(3)APNOMS 2003

.NET platform
• Web services

– XML-based messaging as a fundamental means of data communication to bridge the 
differences that exist between systems 

• ASP.NET
– a programming framework built on the common language runtime that can be used to build 

powerful Web applications.
• ADO.NET

– provides consistent, high-performance access to data, whether you're creating a front-end 
database client or middle-tier business object using an application, tool, language, or even an 
Internet browser.

• MSMQ (MS Message Queuing)
– enables applications to communicate asynchronously across heterogeneous networks and 

systems that may be temporarily offline.
• COM+ (Component Object Model Plus)

– a software architecture that allows applications to be built from binary software components.
• .NET Enterprise Servers

– BizTalk server
• A product for enterprise application integration (EAI) and business-to-business (B2B) integration.

– SQL server
• a relational database management and analysis system for e-commerce, line-of-business, and data 

warehousing solutions

XML Web services are the fundamental building blocks in the move to distributed 
computing on the Internet. Open standards and the focus on communication among 
applications have created an environment where XML Web services are becoming the 
platform for application integration. XML Web Services expose useful functionality to Web 
users through a standard Web protocol, SOAP (Simple Object Access Protocol). XML Web 
services provide a way to describe their interfaces called a WSDL (Web Services 
Description Language). XML Web services are registered with UDDI (Universal Discovery 
Description and Integration).

ASP.NET is a set of technologies for building Web applications and XML Web services. 
ASP.NET pages execute on the server and generate markup such as HTML, WML, or XML 
that is sent to a desktop or mobile browser. ASP.NET pages use a compiled, event-driven 
programming model that improves performance and enables the separation of application 
logic and user interface. ASP.NET pages and ASP.NET XML Web services files contain 
server-side logic written in any .NET-compatible language.

ADO.NET provides consistent, high-performance access to data, whether you're creating a 
front-end database client or middle-tier business object using an application, tool, language, 
or even an Internet browser.

MSMQ provides a messaging infrastructure and development tools for distributed 
messaging applications that enable applications on different systems to communicate with 
each other, even if systems and networks occasionally fail. Message Queuing provides 
guaranteed message delivery, efficient routing, security, support for sending messages 
within transactions, and priority-based messaging. COM+ is a software architecture that 
allows applications to be built from binary software components.

BizTalk Server provides a central, data-driven, integration server and a set of advanced 
productivity tools and services that enable you to build and deploy business processes for 
performing enterprise application integration (EAI) and business-to-business (B2B) 
transactions. With support for multiple transports and protocols, BizTalk Server helps you 
enable existing IT investments for XML and incorporate them into new e-commerce 
technologies.
SQL server is a relational database management and analysis system for e-commerce, line-

of-business, and data warehousing solutions.



4

(4)APNOMS 2003

1. Receive 
Service 
Order 

Request

4. Request 
PSTN 
facility 

information

Service Ordering System

No
Yes

IM_Receive 
Service Order

3. Check
validation

Yes

IM_Request Additional 
Service Order 
Information

5. Receive 
PSTN 
facility 

information

IM_Receive 
Additional 
Service Order 
Information

6. If 
sufficient

8. Receive 
Restart 
Order

7. Send 
Exception

Error 
Handling 

Application

IM_Send Error 
Message

IM_Receive Error 
Completion 
Notification

21. Send SO 
Complete

Outside work manager

11. Send 
Provisionin

g Order

4b4b IM_Send 
Provisioning  
Order

13b13b

IM_Receive 
Provision Result

13. Send 
WO

14. Send 
Activation

15. Send 
CO

12. Receive 
Provision 

Result

IM_Send CO 
Work Order 
Request

IM_Send 
Activation 
Request

IM_Send 
Work Order 
Request

16. Receive 
WO Result

IM_Receive 
Work Order 
Result

IM_Receive 
CO Work 
Order Result

IM_Receive 
Activation 

Result

Fork

Fork

Join

Join

17. Receive 
Act. Result

18. Receive 
CO Result

Equipment Activator

14b314b3

15b115b1 15b315b3

14b114b1

14b214b2

15b215b2

11 33

101101 100100
22

2222

IM_Send 
Service Order 
Result

4a4a
IM_Update Service 
Order Login 

9. Register 
Log-in ID

10. Receive 
registration 

result

5a5a

IM_Receive DB 
Transaction Result 

No

19. Send 
Facility 
Update 
Request

20. Receive 
Facility 
Update 
Result

IM_Send 
Facility 
Update 
Request

1616 IM_Receive 
Facility Update 
Result

2121

2. Wait till 
due date

Real Service Order Scenario

There are a lot of telecommunications services and lots of corresponding ways to manage 
them. But generally OSS business processes can be categorized as five major processes. 
Addition, deletion and modification of services, problem handling and monitoring of 
network devices. Addition is a process of creating a new customer entry in database and 
setting all the required network equipments to provide the requested service. Deletion is a 
process of canceling the service, and modification is a service change. Problem handling 
includes customer data checking, testing the equipment, outside worker dispatch and etc. 
Monitoring is active surveillance process for network resources. Works in those five 
categories are not very different especially in technology viewpoint. So, we choose ‘ADSL 
Addition’ scenario as a prototype scenario. Addition process includes service order 
validation, due date waiting, registering customer information including login ID, activation 
of network equipment and order dispatch for office and outside workers.

We’ll simplify this process but maintain core portions for the prototype especially in 
technology aspect at the next section.



5

(5)APNOMS 2003

Simplified Service Order Scenario
• Logical Design

– A simplified business process of service 
order management for ADSL service

• Descriptions
1. Receive Service Order request
2. Check order type and save it in the order 

database
3. Select a free port from facility database
4. Activate previously selected port. [This 

step will not be tested in this paper.]
5. Update the status of the selected port in 

facility database
6. Insert or update customer information in 

customer database
7. Update the status of the order in order 

database
If error occurs at every step, Error 
management routine will take care of 
that. Fig.1 Service Order

2.Check Order Type,
Save order information

1.Receive Order

3.Select a free port
From Facility DB

6.Insert/Update
Customer Information

End

5.Update the Facility DB

7.Update
Service Order DB

Error Mgmt.
Routine

If error

4.Activate selected port

This is a simplified Addition service order scenario. Complex algorithms and repetitive 
logics will be simplified and omitted. The descriptions of the Addition order process 
are as follows:

1. Receive Service Order request from the BSS (Business Support System).
2. Check order information and validate the service data. And save it in the order database.
3. Select a free port from facility database. Usually network resource selection has a very 

difficult algorithm, but it will be omitted for the convenience of this prototyping.
4. Activate previously selected port. At this step network activation and settings in the 

office and outdoors occurs. This step will not be tested in this paper.
5. Update the status of the selected port in facility database after the field work 

completion.
6. Insert or update customer information in customer database
7. Update the status of the order in order database and report the order completion to BSS.



6

(6)APNOMS 2003

Technical Architecture
• Message Oriented 3 tier Architecture
• Technologies adapted

– 1. ASP.NET web application
• Operators enter the orders via web application

– 2. ADO.NET DLL
• Connect database

– Web services
• Database APIs of order, facility and customer 

DB are exposed via web services
– MSMQ

• transfer order data from web server to 
application(biztalk) server

– 3.4.5.6.7.BizTalk server
• Receive order from MSMQ
• Workflow control SQL server

– SQL server
• Store order, facility and customer information

– COM+
• BizTalk orchestration calls COM+ for database 

manipulation. COM+ calls web service of DB 
APIs

Fig.2 Technical Architecture

Web server

BizTalk DB

DB Server 
for BizTalk

BizTalk server

MSMQ

1.ASP.NET
Web application

2.ADO.NET
Order Processing DLL

MSMQ

BizTalk
Rcv. Function

BizTalk
MessagingPort

BizTalk
Channel/Map

3.4.5.6.7.
BizTalk

Orchestration

ADO.NET
COM+

DBServer

ASP.NET
Web Service

BizTalk
Adaptor

Stored
Procedure

Order DB

Facility DB

Customer DB

Web servers have ASP.NET web applications which enable the operators to enter service 
orders. ASP.NET server controls enable an HTML-like style of declarative programming 
that let us build great ordering pages. Displaying customer data, validating operator input, 
and uploading files are all easy.  Best of all, ASP.NET pages work in all browsers including 
Netscape, Opera, AOL, and Internet Explorer. ADO.NET order processing DLL (Dynamic 
Link Library) connects the order database and save the service order input data.

We could build robust 3-tier applications using MOM(Message Oriented Middleware), 
MSMQ(Microsoft Message Queuing). MSMQ enables web servers to send messages with 
delivery guarantees that can be applied on a message-by-message basis. When networks go 
down, biztalk servers are offline, or computers containing message queues fail, MSMQ will 
ensure that messages get delivered as soon as connections are restored or applications and 
machines are restarted. MSMQ implements these guarantees using disk-based storage 
mechanisms and log-based recovery techniques. MSMQ messages can contain data in any
format that is understood by both the sender and the receiver. The web servers send the 
orders in XML format.

Workflows and EAI functions are conducted by BizTalk server. The COM Component 
shape enables us to use preexisting components to perform database interactions within an 
XLANG schedule. Because COM technology is synchronous, there is always a bidirectional 
flow of messages when an action is performed. In contrast, the flow of messages for an 
asynchronous technology is in one direction. Details on biztalk will be explained later. 

There are two kinds of databases. One is user data such as order data, facility data and 
customer data. These are exposed using web services. Also, we can directly manage the 
data using stored procedure. The other is for biztalk. BizTalk use its own SQL database to 
manage the states of workflow.

This architecture can be applied to the real order scenario as well as the simplified order 
scenario.



7

(7)APNOMS 2003

Web tier
• ASP.NET

– Can be developed using Visual Studio .NET 
– ASP.NET Web Application : use template for creating 

a Web site with static or dynamic HTML pages as the 
user interface 

– ASP.NET Web Service  : use template for creating 
Web Services that can be called through XML SOAP 
interfaces. 

• Class Library
– Order Processing DLL : use template for creating 

classes that will be used in other applications. Similar 
to a DLL

• XML message
– Text data are converted to XML message in web tier
– BizTalk Editor

• A tool with which we can create, edit and manage XML 
specifications. With this we can create a specification 
based on a specification template, and existing schema, 
certain types of document instances, or a blank 
specification. Fig.4 BizTalk Editor(XML message)

Fig.3 VS.NET Web Application

We used ASP.NET web application to receive service orders from BSS. It uses VS.NET 
template for creating a Web site with static or dynamic HTML pages as the user interface as 
shown in Fig.3. Web application take the HTTP request and deliver it to order processing 
DLL. Order Processing DLL is developed as class library in VS.NET. Class library 
template is for creating classes that will be used in other applications. This DLL save the 
service order information to order database and convert the order information to XML 
message format. XML specification is made by BizTalk Editor as shown in Fig.4. BizTalk 
Editor is a tool with which we can create, edit and manage XML specifications. With this 
we can create a specification based on a specification template, and existing schema, certain 
types of document instances, or a blank specification. ASP.NET Web Service uses a 
template in VS.NET for creating Web Services that can be called through XML SOAP 
interfaces. In this implementation, database entries can be accessed via stored procedure 
and web service API (Application Programming Interface). Web service is a good API for 
database because it can be easily accessed regardless of the platform of the clients. 



8

(8)APNOMS 2003

Application tier (BizTalk)
• BizTalk Receive Function

– monitor documents posted to specified locations 
(directory, queue or by web site). 

• BizTalk Mapper
– Build document maps that allow applications and 

business partners who use different document 
definitions 

• BizTalk Messaging Manager
– Use this wizard-based tool to rapidly define 

trading partner relationships. 
• BizTalk Orchestration Designer

– Visually define and build robust, distributed 
business processes. 

• Adapter 
– integration with popular choices such as SAP, 

products from Siebel, Onyx and more.  
– integration with common transports such as J2EE, 

MQSeries and CICS, FTP and more. 

Fig.5 XLANG schedule – Business process

Fig.6 BizTalk orchestration – Data page

In Fig.2 we can see various parts of biztalk server. When we need to receive service orders 
from a receive location and submit them to BizTalk Server, we configure receive functions 
to process the data. BizTalk Server 2002 supports three types of receive functions: File, 
Message Queuing and HTTP. We used MSMQ receive functions. After receiving, a channel 
takes the order. A channel is a set of properties that designates the source of documents or 
messages and defines specific processing steps that are performed by biztalk messaging 
services before a document is delivered to the destination designated by the messaging port 
or distribution list with which the channel is associated. We can adapt map which is made 
by biztalk mapper. BizTalk Mapper is a highly graphical tool that lets us define 
transformations by simply drawing lines between records, fields, and functoids. Messaging 
port gets the service order from the channel and deliver it to biztalk orchestration or 
workflow. A messaging port is a set of rules that trading partner organizations accept for 
sending documents to one another. In this case, the port guide the messages to go to the 
workflow object.

An XLANG schedule describes the business process and the binding of that process to 
implementation technologies. Also, this is called as biztalk orchestration. The process of 
service order is drawn by biztalk orchestration designer and compiled to XLANG language. 
It is activated by messaging port. Every XLANG schedule drawing has a data page. The 
Data page displays: One Message shape for every message in the XLANG schedule. One 
Constants message. One Port References message containing a port field for each port 
within the XLANG schedule drawing. Diagrammatic connections showing the flow of data 
between the message fields. 

We can use adapters for integration with popular choices such as SAP, products from 
Siebel, Onyx and etc and integration with common transports such as J2EE, IBM MQSeries, 
FTP and more. We have lots of EMS(Element Management Systems) implemented with 
Java or other technologies based on Unix or linux. When we communicate with these 
modules, we have to use adapters. 

But BizTalk 2002 orchestration designer has a fatal defect. Fig.5 and Fig.6 shows the 
biztalk orchestration. When the business process becomes more complex, the drawing 
becomes a hell to draw and debug it. 



9

(9)APNOMS 2003

Data tier
• These are simplified database 

schema just for this prototype
– Order database

• SA_ID : Service Agreement ID –
unique ID for a service contract

• ORD_ID : Unique service order ID
• ORDER_TYPE : New, Delete, 

Modify,…
• SVC_TYPE : ADSL, PSTN, …
• STATUS : status of order

– Customer database
• CUST_NAME : name of a 

customer
– Facility database

• DataBase APIs
– Stored Procedure
– Web Service

REQ, DONEStatus of SOstringSTATUS9

Finished TimeDATETIMECOMP_DATE8

(unique, random)Facility ID SelectedstringPORT_ID7

(unique, random)Customer’s NamestringCUST_NAME6

PSTN, ADSLKind of ServicestringSVC_TYPE5

NEWType Of SO stringORDER_TYPE4

Requested TimeDATETIMEREQ_DATE3

(unique, seq)Service Order IDstringORD_ID2

(unique, random)Service Contract IDstringSA_ID1

ValueDescriptionTypeColumnNO

NORMALStatus of CustomerstringSTATUS6

(unique, random)Facility ID SelectedstringPORT_ID5

PSTN, ADSLKind of ServicestringSVC_TYPE4

Created TimeDATETIMECREATE_DATE3

(unique, random)Service Contract IDstringSA_ID2

(unique, random)Customer’s NamestringCUST_NAME1

ValueDescriptionTypeColumnNO

FREE, OCCUPIEDStatus of the PORTstringSTATUS3

ADSL, PSTNType of the PORTstringPORT_TYPE2

(unique, random)Equipment (PORT) IDstringPORT_ID1

ValueDescriptionTypeColumnNO

Table 1. Order DB schema

Table 2. Customer DB schema

Table 3. Facility DB schema

These are simplified database schema just for this prototype. Some descriptions are as 
follows :
•SA_ID : Service Agreement ID – unique ID for a service contract
•ORD_ID : Unique service order ID
•ORDER_TYPE : New, Delete, Modify,…
•SVC_TYPE : ADSL, PSTN, …
•STATUS : status of order
•CUST_NAME : name of a customer

Database APIs are implemented with stored procedure and web services. Stored 
procedures can make managing our database and displaying information about that database 
much easier. We can save precompiled collections of SQL statements and optional control-
of-flow statements stored under a name and processed as a unit. Stored procedures are 
stored within a database and can be executed with one call from an application; and allow 
user-declared variables, conditional execution, and other powerful programming features. 
The advantages of using stored procedures are :
•We can execute a series of SQL statements in a single stored procedure.
•We can reference other stored procedures from within our stored procedure, which can 
simplify a series of complex statements.
•The stored procedure is compiled on the server when it is created, so it executes faster than 
individual SQL statements. 



10

(10)APNOMS 2003

Test Results (1/2)
• H/W Conditions

– BizTalk, Web server : Intel DP 2.4GHz 2-CPU, 2GB RAM
– Database server : Intel MP 2.0GHz 4-CPU, 4GB RAM

• S/W Conditions
– OS (Windows 2003 server RC2, .NET Framework v1.1), IDE (Visual Studio .NET 2003 Beta)
– EAI/Workflow engine (BizTalk 2002), Database (SQL server 2000)

• Throughput
– There are pre-built 100,000 entries in Facility table.
– Average order processing rate is over 13.4 orders/sec as shown in Table 4.
– When DB access components registered in GAC not COM+, performances degraded by 17%

• Response Time
– Average Response Time : 1.105 sec
– Maximum Response Time : 2.100 sec (At the first time only : 6.190 sec)
– Minimum Response Time : 0.143 sec
– Standard deviation : distributed evenly from min. value to max. value

05014.011.013.402/sec75

05023.02.013.443/sec50

05015.011.013.478/sec25

FailureConcurrent 
access

Max. completed 
schedule

Min. completed 
schedule

Avg. completed 
schedule

No. of Pool

Table 4. Throughput

Tests are repetitively conducted to confirm the stability of all the systems, tools and logics. 
There are pre-built 100,000 entries in facility database table. And other databases are empty 
at the start, but when every order comes in, corresponding customer information is 
automatically generated. Average input XML message size is about 250 byte.  Some results 
on throughput are shown here:
•Average order processing rate is about 13.4 orders/sec
•DB access components can be registered in Global assembly rather than as COM+, but 
performances are degraded by about 17%. 
Some results on response time (Elapsed time for an order completion) are shown :

•Average Response Time : 1.105 sec 
•Maximum Response Time : 2.100 sec 
•Minimum Response Time : 0.143 sec
•Standard deviation : distributed evenly from min. value to max. value

And we could find that there must be some considerations for BizTalk server. The number 
of input orders should be regulated using object pooling or other customized logic, if not, 
processing rates become lower and failure cases occur. BizTalk Server takes advantage of 
COM object pooling, and enables us to restrict the number of active schedule instances. We 
can set a maximum number of schedule instances for a pool. When this maximum has been 
reached, no additional instances of schedules that use that pool are created until a schedule 
either completes or is dehydrated. The default maximum is 25 instances. We can also set a 
timeout period on a pool. This is the length of time a schedule instance pending activation 
will wait for a slot to become available within its pool. We can improve performance by 
setting a minimum pool size. The minimum size determines how many pooling objects will 
be maintained in memory, so that they do not have to be created on demand each time a 
schedule instance is activated in that pool. The default minimum is one object. 



11

(11)APNOMS 2003

Test Results (2/2)
• BizTalk

– Completed Schedule Instances/sec (Red Line) : The rate 
at which schedule instances successfully complete

– Running Schedule Instance (Blue line) : The current 
number of running schedule instances

– Failed Schedule Instances/sec (Pink) : The rate at which 
schedule instances fail

• Memory
– Process : Private Bytes (Brown line) : We can detect 

memory leaks (Results: Acceptable)
– Available Bytes(Sky Blue line) : We can detect usable 

memory amounts. This value must be maintained above 
4MB. If not, events which means system virtual memory 
lack will occurs. Available bytes must be maintained 
about 10% of real memory. (Results: Acceptable)

• System
– Processor queue length : If this value is high, we can get 

more performance with faster CPU. One system has only 
one processor queue even in multi-processor system. 10 
ready threads per processor are acceptable. (Results: 
Acceptable)

– %Processor time : It is calculated by monitoring the time 
that the service is inactive, and subtracting that value from 
100%. 0% means this server stops and 100% means this 
server is tremendously loaded. (Results: Acceptable)

Fig 7. Performance monitor - biztalk

Fig 8. Performance monitor - memory

Fig 9. Performance monitor - system

The testing tools are as follows :
•VS.NET ACT (Application Center Test) : designed to stress test web servers and analyze 
performance and scalability problems with web applications, including Active Server Pages 
(ASP) and the components they use. It generates new orders automatically.
•SQL query analyzer : a graphical user interface for designing and testing Transact-SQL 
statements, batches, and scripts interactively.
•XLANG Monitor : monitor XLANG schedule events and see the progress of the schedule 
instances.
•Performance Monitor : Included in Windows OS. This is a tool for monitoring the 
performance of Windows servers. It uses a series of counters to track data, such as the 
number of processes waiting for disk time, the number of network packets transmitted per 
second, the percentage of processor utilization and biztalk and sql server performance 
counter. Some of the performance counters are explained above  

We can have some lessons from this prototype. It takes very long time to conduct tests and 
make results. So, before testing, we must decide test items, perfect test 
methods/routines/plan and set up an exact configuration. In some cases, we have to make 
complex test scripts, so we have to think in advance and pump up our skills. We have to set 
appropriate number of maximum activated schedule instances in a pool considering 
XLANG scheduler throughput. If too many instances are initiated, their waiting time can be 
too long to be done well. Maintain pool limitation reasonably above the average completed 
instances/sec. If COM component port implementations in BizTalk Orchestration are 
registered in COM component services, we can get more performance than in the case of 
being registered in Assembly (GAC).



12

(12)APNOMS 2003

Conclusion & Future Work
• Possibilities for .NET based OSS are shown

– With .NET platform, developers can work in a very efficient way
– Test results show .NET platform can cover OSS business process
– BizTalk 2002 is not good for complex workflows

• Future works
– Test various implementations of BizTalk (e.g. Transaction shape,

etc.) 
– BizTalk adaptor test

• Lots of existing Unix-based activator/tester can be connected
• But if used too many adaptors, performance degradation occurs

– Adaptability of BizTalk 2004 test
• BizTalk 2004 Beta released May 2003
• Test new and enhanced features such as workflow functionalities

Conclusion and Future work
We implemented a simplified ADSL Addition process using .NET platform which is based on web service, 

ASP.NET, ADO.NET, CLR (Common Language Runtime) and so many libraries and enterprise .NET 
servers such as SQL server 2000, BizTalk server 2002. In developing phase, .NET platform made the 
developers work in very efficient way, and the test result showed .NET platform can satisfy the OSS 
requirements well. But this is a small project to see the ‘possibilities’ of .NET platform for OSS, we 
must proceed to test various things.

References
1. Jae-Oh Lee, “Enabling Network Management Using Java Technologies”, IEEE Commun. Mag., Jan. 

2000.
2. Steve Vinoski, “CORBA: Integrating Diverse Applications Within Distributed Heterogeneous 

Environments”, IEEE Commun. Mag., Feb. 1997.
3. Seong Ik Hong, Mun Jo Jung, “A Study on CORBA-based ATM.ADSL Network Resource 

Management Systems Design and Construction Project using Object-oriented Network Resource 
Modeling Technique”, KICS Mag. (Korean), Jun. 2001.

4. “OSS Java Community Process Program”, http://jcp.org/jsr/tech/oss.jsp
5. “OSS Working Group”, http://www.microsoft.com/SERVICEPROVIDERS/ossbss/osswg.asp
6. “Microsoft Developer Network”, http://msdn.microsoft.com
7. http://www.microsoft.com/biztalk
8. http://www.microsoft.com/sql
9. “Microsoft .NET vs Java”, Mark Driver, Gartner Symposium Itxpo 2002
10. “The Essential Client/Server Survival Guide”, 2nd edition, Robert Orfali, Dan Harkey, Jeri Edwards, 

Wiley


